Answer
Solutions to the inequalities are:
- (a) \( x < -6 \)
- (b) \( x \geq -6 \)
- (c) \( y \leq -\frac{1}{2} \)
- (d) \( y > -6 \)
- (e) \( x \geq 0 \)
Solution
Solve the inequality by following steps:
- step0: Solve for \(x\):
\(\frac{3x}{4}-x-\frac{3}{2}\leq 0\)
- step1: Multiply both sides:
\(\left(\frac{3x}{4}-x-\frac{3}{2}\right)\times 2\times 2\leq 0\times 2\times 2\)
- step2: Multiply the terms:
\(3x-4x-6\leq 0\)
- step3: Simplify:
\(-x-6\leq 0\)
- step4: Move the constant to the right side:
\(-x\leq 0+6\)
- step5: Remove 0:
\(-x\leq 6\)
- step6: Change the signs:
\(x\geq -6\)
Solve the equation \( \frac{y+5}{3}+y-1<=0 \).
Solve the inequality by following steps:
- step0: Solve for \(y\):
\(\frac{y+5}{3}+y-1\leq 0\)
- step1: Multiply both sides:
\(\left(\frac{y+5}{3}+y-1\right)\times 3\leq 0\times 3\)
- step2: Multiply the terms:
\(y+5+3y-3\leq 0\)
- step3: Simplify:
\(4y+2\leq 0\)
- step4: Move the constant to the right side:
\(4y\leq 0-2\)
- step5: Remove 0:
\(4y\leq -2\)
- step6: Divide both sides:
\(\frac{4y}{4}\leq \frac{-2}{4}\)
- step7: Divide the numbers:
\(y\leq -\frac{1}{2}\)
Solve the equation \( (x+3)(x-4)-(x-3)(x+4)<=0 \).
Solve the inequality by following steps:
- step0: Solve for \(x\):
\(\left(x+3\right)\left(x-4\right)-\left(x-3\right)\left(x+4\right)\leq 0\)
- step1: Simplify:
\(-2x\leq 0\)
- step2: Change the signs:
\(2x\geq 0\)
- step3: Rewrite the expression:
\(x\geq 0\)
Solve the equation \( \frac{x}{3}-\frac{x}{2}-1>0 \).
Solve the inequality by following steps:
- step0: Solve for \(x\):
\(\frac{x}{3}-\frac{x}{2}-1>0\)
- step1: Multiply both sides:
\(\left(\frac{x}{3}-\frac{x}{2}-1\right)\times 3\times 2>0\times 3\times 2\)
- step2: Multiply the terms:
\(2x-3x-6>0\)
- step3: Simplify:
\(-x-6>0\)
- step4: Move the constant to the right side:
\(-x>0+6\)
- step5: Remove 0:
\(-x>6\)
- step6: Change the signs:
\(x<-6\)
Solve the equation \( \frac{3 y+2}{4}-\frac{y-6}{3}>0 \).
Solve the inequality by following steps:
- step0: Solve for \(y\):
\(\frac{3y+2}{4}-\frac{y-6}{3}>0\)
- step1: Multiply both sides:
\(\left(\frac{3y+2}{4}-\frac{y-6}{3}\right)\times 4\times 3>0\times 4\times 3\)
- step2: Multiply the terms:
\(9y+6-4y+24>0\)
- step3: Simplify:
\(5y+30>0\)
- step4: Move the constant to the right side:
\(5y>0-30\)
- step5: Remove 0:
\(5y>-30\)
- step6: Divide both sides:
\(\frac{5y}{5}>\frac{-30}{5}\)
- step7: Divide the numbers:
\(y>-6\)
Let's solve each inequality step by step:
### (a) \( \frac{x}{3} - \frac{x}{2} > 1 \)
1. **Combine the fractions**:
\[
\frac{x}{3} - \frac{x}{2} = \frac{2x - 3x}{6} = \frac{-x}{6}
\]
So, the inequality becomes:
\[
\frac{-x}{6} > 1
\]
2. **Multiply both sides by -6** (remember to reverse the inequality):
\[
x < -6
\]
### (b) \( \frac{3x}{4} - x \leq 1 \frac{1}{2} \)
1. **Convert \(1 \frac{1}{2}\) to an improper fraction**:
\[
1 \frac{1}{2} = \frac{3}{2}
\]
2. **Rewrite the inequality**:
\[
\frac{3x}{4} - x \leq \frac{3}{2}
\]
3. **Combine like terms**:
\[
\frac{3x}{4} - \frac{4x}{4} \leq \frac{3}{2} \implies \frac{-x}{4} \leq \frac{3}{2}
\]
4. **Multiply both sides by -4** (reverse the inequality):
\[
x \geq -6
\]
### (c) \( \frac{y+5}{3} + y \leq 1 \)
1. **Combine the terms**:
\[
\frac{y+5}{3} + y = \frac{y + 5 + 3y}{3} = \frac{4y + 5}{3}
\]
2. **Rewrite the inequality**:
\[
\frac{4y + 5}{3} \leq 1
\]
3. **Multiply both sides by 3**:
\[
4y + 5 \leq 3
\]
4. **Isolate \(y\)**:
\[
4y \leq -2 \implies y \leq -\frac{1}{2}
\]
### (d) \( \frac{3y+2}{4} - \frac{y-6}{3} > 0 \)
1. **Combine the fractions**:
\[
\frac{3y+2}{4} - \frac{y-6}{3} = \frac{(3y+2) \cdot 3 - (y-6) \cdot 4}{12}
\]
This simplifies to:
\[
\frac{9y + 6 - 4y + 24}{12} = \frac{5y + 30}{12}
\]
2. **Rewrite the inequality**:
\[
\frac{5y + 30}{12} > 0
\]
3. **Multiply both sides by 12**:
\[
5y + 30 > 0
\]
4. **Isolate \(y\)**:
\[
5y > -30 \implies y > -6
\]
### (e) \( (x+3)(x-4) \leq (x-3)(x+4) \)
1. **Expand both sides**:
\[
x^2 - x - 12 \leq x^2 + x - 12
\]
2. **Subtract \(x^2 - 12\) from both sides**:
\[
-x \leq x \implies -2x \leq 0
\]
3. **Divide by -2** (reverse the inequality):
\[
x \geq 0
\]
### Summary of Solutions:
- (a) \( x < -6 \)
- (b) \( x \geq -6 \)
- (c) \( y \leq -\frac{1}{2} \)
- (d) \( y > -6 \)
- (e) \( x \geq 0 \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution