Question
upstudy study bank question image url

Practice Distributed and Integrated \( \begin{array}{ll}\text { Lse synthetic division to divide. } & \text { "2. } 2+4 x-2 x^{2}+4 x^{2} \text { by }(-3+x) \\ \text { 1. } 2 x^{4}-x \text { by }(x-2) & \text { isin }\end{array} \)

Ask by Love Macdonald. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the results of the synthetic division: 1. \( 2x^4 - x \) divided by \( x - 2 \) equals \( 2x^3 + 4x^2 + 8x + 15 \) with a remainder of 30. 2. \( 4x^3 - 2x^2 + 4x + 2 \) divided by \( x - 3 \) equals \( 4x^2 + 10x + 34 \) with a remainder of 104.

Solution

Below are two worked‐examples using synthetic division. (Remember: when a polynomial is missing any terms, you must include them with zero coefficients.) ───────────────────────────── Example 1. Divide 2x⁴ – x by x – 2. Step 1. Write the dividend in descending order, inserting any missing terms. Here,   2x⁴ + 0·x³ + 0·x² – 1·x + 0. So the coefficients are: 2, 0, 0, –1, 0. Step 2. For synthetic division with divisor x – 2, use the zero 2. Set up: ______________________________ 2 | 2  0  0   –1  0 | ? ? ? ? Process: a) Bring down the leading coefficient: 2. b) Multiply 2 by 2 → 4; write under the next coefficient. c) Add: 0 + 4 = 4. d) Multiply 4 by 2 → 8; write under the next coefficient. e) Add: 0 + 8 = 8. f) Multiply 8 by 2 → 16; write under the next coefficient. g) Add: (–1) + 16 = 15. h) Multiply 15 by 2 → 30; write under the constant. i) Add: 0 + 30 = 30. The synthetic division table looks like: 2   0   0   –1   0 ---------------------------- 2 | 2   4   8   15  30 Step 3. Interpretation: – The bottom row (except the final number) gives the coefficients of the quotient:   Quotient: 2x³ + 4x² + 8x + 15. – The final number (30) is the remainder. Thus,   (2x⁴ – x) ÷ (x – 2) = 2x³ + 4x² + 8x + 15  with remainder 30, or equivalently,   (2x⁴ – x) = (x – 2)(2x³ + 4x² + 8x + 15) + 30. ───────────────────────────── Example 2. Divide 4x³ – 2x² + 4x + 2 by –3 + x (which can be written as x – 3). Step 1. Write the dividend in descending order. It is already ordered:   4x³ – 2x² + 4x + 2, with coefficients: 4, –2, 4, 2. Step 2. For synthetic division with divisor x – 3, use the zero 3. Set up: ____________________________ 3 | 4  –2  4  2 Process: a) Bring down the leading coefficient: 4. b) Multiply 4 by 3 → 12; write under the next coefficient. c) Add: –2 + 12 = 10. d) Multiply 10 by 3 → 30; write under the next coefficient. e) Add: 4 + 30 = 34. f) Multiply 34 by 3 → 102; write under the constant. g) Add: 2 + 102 = 104. The table becomes: 4   –2   4   2 ------------------------- 3 | 4   10   34  104 Step 3. Interpretation: – The quotient is given by the numbers (except the last): 4x² + 10x + 34. – The remainder is 104. Thus,   (4x³ – 2x² + 4x + 2) ÷ (x – 3) = 4x² + 10x + 34  with remainder 104, or in equation form,   4x³ – 2x² + 4x + 2 = (x – 3)(4x² + 10x + 34) + 104. ───────────────────────────── Summary of Answers: 1. (2x⁴ – x) ÷ (x – 2) = 2x³ + 4x² + 8x + 15 remainder 30. 2. (4x³ – 2x² + 4x + 2) ÷ (x – 3) = 4x² + 10x + 34 remainder 104. These examples illustrate how to use synthetic division for dividing polynomials.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Synthetic division is a great technique for simplifying polynomial division. For the first one, if you want to divide \(2 + 4x - 2x^2 + 4x^2\) by \((-3 + x)\), you need to set it up correctly. First, rewrite \((-3 + x)\) as \(x - 3\) and use the zero point \(x = 3\). Then, align your coefficients from the polynomial (make sure to include all degrees, filling with zeros when necessary). Now, onto the second problem—dividing \(2x^4 - x\) by \((x - 2)\)! Here, you're using the zero point \(x = 2\). Similar to the first division, list out your coefficients. Remember that this method helps you avoid the long division mess! Aim for those final coefficients and the remainder to round out your answer beautifully. Happy dividing!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy