Pregunta
upstudy study bank question image url

Practice Distributed and Integrated \( \begin{array}{ll}\text { Lse synthetic division to divide. } & \text { "2. } 2+4 x-2 x^{2}+4 x^{2} \text { by }(-3+x) \\ \text { 1. } 2 x^{4}-x \text { by }(x-2) & \text { isin }\end{array} \)

Ask by Love Macdonald. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the results of the synthetic division: 1. \( 2x^4 - x \) divided by \( x - 2 \) equals \( 2x^3 + 4x^2 + 8x + 15 \) with a remainder of 30. 2. \( 4x^3 - 2x^2 + 4x + 2 \) divided by \( x - 3 \) equals \( 4x^2 + 10x + 34 \) with a remainder of 104.

Solución

Below are two worked‐examples using synthetic division. (Remember: when a polynomial is missing any terms, you must include them with zero coefficients.) ───────────────────────────── Example 1. Divide 2x⁴ – x by x – 2. Step 1. Write the dividend in descending order, inserting any missing terms. Here,   2x⁴ + 0·x³ + 0·x² – 1·x + 0. So the coefficients are: 2, 0, 0, –1, 0. Step 2. For synthetic division with divisor x – 2, use the zero 2. Set up: ______________________________ 2 | 2  0  0   –1  0 | ? ? ? ? Process: a) Bring down the leading coefficient: 2. b) Multiply 2 by 2 → 4; write under the next coefficient. c) Add: 0 + 4 = 4. d) Multiply 4 by 2 → 8; write under the next coefficient. e) Add: 0 + 8 = 8. f) Multiply 8 by 2 → 16; write under the next coefficient. g) Add: (–1) + 16 = 15. h) Multiply 15 by 2 → 30; write under the constant. i) Add: 0 + 30 = 30. The synthetic division table looks like: 2   0   0   –1   0 ---------------------------- 2 | 2   4   8   15  30 Step 3. Interpretation: – The bottom row (except the final number) gives the coefficients of the quotient:   Quotient: 2x³ + 4x² + 8x + 15. – The final number (30) is the remainder. Thus,   (2x⁴ – x) ÷ (x – 2) = 2x³ + 4x² + 8x + 15  with remainder 30, or equivalently,   (2x⁴ – x) = (x – 2)(2x³ + 4x² + 8x + 15) + 30. ───────────────────────────── Example 2. Divide 4x³ – 2x² + 4x + 2 by –3 + x (which can be written as x – 3). Step 1. Write the dividend in descending order. It is already ordered:   4x³ – 2x² + 4x + 2, with coefficients: 4, –2, 4, 2. Step 2. For synthetic division with divisor x – 3, use the zero 3. Set up: ____________________________ 3 | 4  –2  4  2 Process: a) Bring down the leading coefficient: 4. b) Multiply 4 by 3 → 12; write under the next coefficient. c) Add: –2 + 12 = 10. d) Multiply 10 by 3 → 30; write under the next coefficient. e) Add: 4 + 30 = 34. f) Multiply 34 by 3 → 102; write under the constant. g) Add: 2 + 102 = 104. The table becomes: 4   –2   4   2 ------------------------- 3 | 4   10   34  104 Step 3. Interpretation: – The quotient is given by the numbers (except the last): 4x² + 10x + 34. – The remainder is 104. Thus,   (4x³ – 2x² + 4x + 2) ÷ (x – 3) = 4x² + 10x + 34  with remainder 104, or in equation form,   4x³ – 2x² + 4x + 2 = (x – 3)(4x² + 10x + 34) + 104. ───────────────────────────── Summary of Answers: 1. (2x⁴ – x) ÷ (x – 2) = 2x³ + 4x² + 8x + 15 remainder 30. 2. (4x³ – 2x² + 4x + 2) ÷ (x – 3) = 4x² + 10x + 34 remainder 104. These examples illustrate how to use synthetic division for dividing polynomials.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Synthetic division is a great technique for simplifying polynomial division. For the first one, if you want to divide \(2 + 4x - 2x^2 + 4x^2\) by \((-3 + x)\), you need to set it up correctly. First, rewrite \((-3 + x)\) as \(x - 3\) and use the zero point \(x = 3\). Then, align your coefficients from the polynomial (make sure to include all degrees, filling with zeros when necessary). Now, onto the second problem—dividing \(2x^4 - x\) by \((x - 2)\)! Here, you're using the zero point \(x = 2\). Similar to the first division, list out your coefficients. Remember that this method helps you avoid the long division mess! Aim for those final coefficients and the remainder to round out your answer beautifully. Happy dividing!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad