Question
upstudy study bank question image url

5 Resuelve las siguientes ecuaciones: a) \( \frac{1}{x}-\frac{1}{x+3}=\frac{3}{10} \) b) \( \frac{4}{x}+\frac{2(x+1)}{3(x-2)}=4 \) c) \( \frac{1}{x}+\frac{1}{x^{2}}=\frac{3}{4} \)

Ask by Nguyen Hammond. in Spain
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Las soluciones son: a) \( x = -5 \) o \( x = 2 \) b) \( x = \frac{4}{5} \) o \( x = 3 \) c) \( x = -\frac{2}{3} \) o \( x = 2 \)

Solution

Solve the equation \( \frac{1}{x}-\frac{1}{x+3}=\frac{3}{10} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\) - step1: Find the domain: \(\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10},x \in \left(-\infty,-3\right)\cup \left(-3,0\right)\cup \left(0,+\infty\right)\) - step2: Multiply both sides of the equation by LCD: \(\left(\frac{1}{x}-\frac{1}{x+3}\right)\times 10x\left(x+3\right)=\frac{3}{10}\times 10x\left(x+3\right)\) - step3: Simplify the equation: \(30=3x^{2}+9x\) - step4: Swap the sides: \(3x^{2}+9x=30\) - step5: Move the expression to the left side: \(3x^{2}+9x-30=0\) - step6: Factor the expression: \(3\left(x-2\right)\left(x+5\right)=0\) - step7: Divide the terms: \(\left(x-2\right)\left(x+5\right)=0\) - step8: Separate into possible cases: \(\begin{align}&x-2=0\\&x+5=0\end{align}\) - step9: Solve the equation: \(\begin{align}&x=2\\&x=-5\end{align}\) - step10: Check if the solution is in the defined range: \(\begin{align}&x=2\\&x=-5\end{align},x \in \left(-\infty,-3\right)\cup \left(-3,0\right)\cup \left(0,+\infty\right)\) - step11: Find the intersection: \(\begin{align}&x=2\\&x=-5\end{align}\) - step12: Rewrite: \(x_{1}=-5,x_{2}=2\) Solve the equation \( \frac{4}{x}+\frac{2(x+1)}{3(x-2)}=4 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{4}{x}+\frac{2\left(x+1\right)}{3\left(x-2\right)}=4\) - step1: Find the domain: \(\frac{4}{x}+\frac{2\left(x+1\right)}{3\left(x-2\right)}=4,x \in \left(-\infty,0\right)\cup \left(0,2\right)\cup \left(2,+\infty\right)\) - step2: Multiply both sides of the equation by LCD: \(\left(\frac{4}{x}+\frac{2\left(x+1\right)}{3\left(x-2\right)}\right)\times 3x\left(x-2\right)=4\times 3x\left(x-2\right)\) - step3: Simplify the equation: \(14x-24+2x^{2}=12x^{2}-24x\) - step4: Move the expression to the left side: \(14x-24+2x^{2}-\left(12x^{2}-24x\right)=0\) - step5: Calculate: \(38x-24-10x^{2}=0\) - step6: Factor the expression: \(-2\left(3-x\right)\left(4-5x\right)=0\) - step7: Divide the terms: \(\left(3-x\right)\left(4-5x\right)=0\) - step8: Separate into possible cases: \(\begin{align}&3-x=0\\&4-5x=0\end{align}\) - step9: Solve the equation: \(\begin{align}&x=3\\&x=\frac{4}{5}\end{align}\) - step10: Check if the solution is in the defined range: \(\begin{align}&x=3\\&x=\frac{4}{5}\end{align},x \in \left(-\infty,0\right)\cup \left(0,2\right)\cup \left(2,+\infty\right)\) - step11: Find the intersection: \(\begin{align}&x=3\\&x=\frac{4}{5}\end{align}\) - step12: Rewrite: \(x_{1}=\frac{4}{5},x_{2}=3\) Solve the equation \( \frac{1}{x}+\frac{1}{x^{2}}=\frac{3}{4} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{1}{x}+\frac{1}{x^{2}}=\frac{3}{4}\) - step1: Find the domain: \(\frac{1}{x}+\frac{1}{x^{2}}=\frac{3}{4},x\neq 0\) - step2: Multiply both sides of the equation by LCD: \(\left(\frac{1}{x}+\frac{1}{x^{2}}\right)\times 4x^{2}=\frac{3}{4}\times 4x^{2}\) - step3: Simplify the equation: \(4x+4=3x^{2}\) - step4: Move the expression to the left side: \(4x+4-3x^{2}=0\) - step5: Factor the expression: \(\left(2-x\right)\left(2+3x\right)=0\) - step6: Separate into possible cases: \(\begin{align}&2-x=0\\&2+3x=0\end{align}\) - step7: Solve the equation: \(\begin{align}&x=2\\&x=-\frac{2}{3}\end{align}\) - step8: Check if the solution is in the defined range: \(\begin{align}&x=2\\&x=-\frac{2}{3}\end{align},x\neq 0\) - step9: Find the intersection: \(\begin{align}&x=2\\&x=-\frac{2}{3}\end{align}\) - step10: Rewrite: \(x_{1}=-\frac{2}{3},x_{2}=2\) Las soluciones de las ecuaciones dadas son: a) \( x = -5 \) o \( x = 2 \) b) \( x = \frac{4}{5} \) o \( x = 3 \) c) \( x = -\frac{2}{3} \) o \( x = 2 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Para resolver las ecuaciones dadas, sigamos un enfoque paso a paso. a) Para \( \frac{1}{x}-\frac{1}{x+3}=\frac{3}{10} \): Primero, encuentra un denominador común, que es \( x(x+3) \): \[ \frac{(x+3) - x}{x(x+3)} = \frac{3}{10} \] Simplificando el numerador: \[ \frac{3}{x(x+3)} = \frac{3}{10} \] Multiplicamos ambos lados por \( 10x(x+3) \): \[ 30 = 3x(x+3) \] Dividiendo por 3: \[ 10 = x^2 + 3x \] Reorganizando: \[ x^2 + 3x - 10 = 0 \] Factoremos: \[ (x + 5)(x - 2) = 0 \] Por lo tanto, \( x = -5 \) o \( x = 2 \). --- b) Para \( \frac{4}{x}+\frac{2(x+1)}{3(x-2)}=4 \): Busquemos un denominador común, que es \( 3x(x-2) \): Multiplicamos toda la ecuación por \( 3x(x-2) \): \[ 12(x-2) + 2x(x+1) = 12x(x-2) \] Expandiendo: \[ 12x - 24 + 2x^2 + 2x = 12x^2 - 24x \] Reorganizamos: \[ 0 = 10x^2 - 46x + 24 \] Dividimos por 2: \[ 0 = 5x^2 - 23x + 12 \] Usamos la fórmula cuadrática \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{23 \pm \sqrt{(-23)^2 - 4 \cdot 5 \cdot 12}}{2 \cdot 5} \] Calculamos \( x \), obtendremos dos soluciones. --- c) Para \( \frac{1}{x}+\frac{1}{x^{2}}=\frac{3}{4} \): Multiplicamos por \( 4x^2 \) para eliminar denominadores: \[ 4x + 4 = 3x^2 \] Reorganizamos: \[ 3x^2 - 4x - 4 = 0 \] Aplicamos la fórmula cuadrática: \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 3 \cdot (-4)}}{2 \cdot 3} \] Calculamos \( x \) y obtendremos dos soluciones, más simples que el cálculo. Recuerda siempre revisar las soluciones en la ecuación original para evitar errores.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy