Question
upstudy study bank question image url

Find the solution of the following initial value problem. \( v^{\prime}(x)=8 x^{\frac{1}{3}}-8 x^{-\frac{1}{3}} ; v(8)=29, x>0 \)

Ask by Dunn Crawford. in the United States
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The solution to the initial value problem is: \[ v(x) = 6x^{\frac{4}{3}} - 12x^{\frac{2}{3}} - 19 \]

Solution

To solve the initial value problem: \[ v^{\prime}(x) = 8x^{\frac{1}{3}} - 8x^{-\frac{1}{3}}, \quad v(8) = 29, \quad x > 0 \] **Step 1: Integrate \( v^{\prime}(x) \) to find \( v(x) \).** \[ v(x) = \int \left(8x^{\frac{1}{3}} - 8x^{-\frac{1}{3}}\right) dx \] Calculate each integral separately: 1. **Integrate \( 8x^{\frac{1}{3}} \):** \[ \int 8x^{\frac{1}{3}} dx = 8 \cdot \frac{x^{\frac{4}{3}}}{\frac{4}{3}} = 6x^{\frac{4}{3}} \] 2. **Integrate \( -8x^{-\frac{1}{3}} \):** \[ \int -8x^{-\frac{1}{3}} dx = -8 \cdot \frac{x^{\frac{2}{3}}}{\frac{2}{3}} = -12x^{\frac{2}{3}} \] Combine the results and add the constant of integration \( C \): \[ v(x) = 6x^{\frac{4}{3}} - 12x^{\frac{2}{3}} + C \] **Step 2: Apply the initial condition \( v(8) = 29 \) to find \( C \).** \[ 29 = 6(8)^{\frac{4}{3}} - 12(8)^{\frac{2}{3}} + C \] First, calculate the exponents: \[ 8^{\frac{1}{3}} = 2, \quad 8^{\frac{2}{3}} = 4, \quad 8^{\frac{4}{3}} = 16 \] Substitute these values back: \[ 29 = 6 \cdot 16 - 12 \cdot 4 + C \\ 29 = 96 - 48 + C \\ 29 = 48 + C \\ C = 29 - 48 \\ C = -19 \] **Final Solution:** \[ v(x) = 6x^{\frac{4}{3}} - 12x^{\frac{2}{3}} - 19 \] **Alternatively, using radical notation:** \[ v(x) = 6x \sqrt[3]{x} - 12 \sqrt[3]{x^2} - 19 \] **Answer:** After simplifying, a solution is 6 x^(4⁄3) minus twelve x^(2⁄3) minus nineteen. Thus, v(x) = 6 x^(4/3) − 12 x^(2/3) − 19

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve the initial value problem, we start by integrating the given differential equation \( v^{\prime}(x) = 8 x^{\frac{1}{3}} - 8 x^{-\frac{1}{3}} \). 1. Integrate \( v'(x) \): \[ v(x) = \int (8 x^{\frac{1}{3}} - 8 x^{-\frac{1}{3}}) \, dx \] This can be separated into two integrals: \[ v(x) = 8 \int x^{\frac{1}{3}} \, dx - 8 \int x^{-\frac{1}{3}} \, dx \] \[ = 8 \left( \frac{3}{4} x^{\frac{4}{3}} \right) - 8 \left( 3 x^{\frac{2}{3}} \right) + C \] \[ = 6 x^{\frac{4}{3}} - 24 x^{\frac{2}{3}} + C \] 2. Now, apply the initial condition \( v(8) = 29 \) to find \( C \): \[ v(8) = 6(8^{\frac{4}{3}}) - 24(8^{\frac{2}{3}}) + C \] Calculate \( 8^{\frac{4}{3}} = (2^3)^{\frac{4}{3}} = 2^4 = 16 \) and \( 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^2 = 4 \): \[ v(8) = 6(16) - 24(4) + C = 96 - 96 + C = C \] Since \( v(8) = 29 \), we find \( C = 29 \). 3. Therefore, the solution to the initial value problem is: \[ v(x) = 6 x^{\frac{4}{3}} - 24 x^{\frac{2}{3}} + 29. \]

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy