Question
upstudy study bank question image url

C(i) Completing the Squate (1) Write each of the follouing thnomials in the form \( a(x+p)^{2}+q \) (1) \( 2 x^{2}+4 x+6 \) (2) \( 2 x^{2}-6 x+8 \) (3) \( 3 x^{2}-18 x+7 \) (4) \( -2 x^{2}+2 x-8 \) (5) \( -3 x^{2}+6 x+2 \) (6) \( 5 x^{2}+10 x-3 \)

Ask by Peterson Higgins. in South Africa
Jan 28,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the trinomials expressed in the form \( a(x + p)^2 + q \): 1. \( 2x^{2} + 4x + 6 = 2(x + 1)^{2} + 4 \) 2. \( 2x^{2} - 6x + 8 = 2\left(x - \frac{3}{2}\right)^{2} + \frac{7}{2} \) 3. \( 3x^{2} - 18x + 7 = 3(x - 3)^{2} - 20 \) 4. \( -2x^{2} + 2x - 8 = -2\left(x - \frac{1}{2}\right)^{2} - \frac{15}{2} \) 5. \( -3x^{2} + 6x + 2 = -3(x - 1)^{2} + 5 \) 6. \( 5x^{2} + 10x - 3 = 5(x + 1)^{2} - 8 \)

Solution

Sure! Let's complete the square for each of the given trinomials and express them in the form \( a(x + p)^2 + q \). ### (1) \( 2x^{2} + 4x + 6 \) 1. **Factor out the coefficient of \( x^2 \) from the first two terms:** \[ 2(x^{2} + 2x) + 6 \] 2. **Complete the square inside the parentheses:** \[ x^{2} + 2x = (x + 1)^{2} - 1 \] 3. **Substitute back and simplify:** \[ 2\left[(x + 1)^{2} - 1\right] + 6 = 2(x + 1)^{2} - 2 + 6 = 2(x + 1)^{2} + 4 \] **Final Form:** \[ 2(x + 1)^{2} + 4 \] --- ### (2) \( 2x^{2} - 6x + 8 \) 1. **Factor out the coefficient of \( x^2 \) from the first two terms:** \[ 2(x^{2} - 3x) + 8 \] 2. **Complete the square inside the parentheses:** \[ x^{2} - 3x = \left(x - \frac{3}{2}\right)^{2} - \frac{9}{4} \] 3. **Substitute back and simplify:** \[ 2\left[\left(x - \frac{3}{2}\right)^{2} - \frac{9}{4}\right] + 8 = 2\left(x - \frac{3}{2}\right)^{2} - \frac{9}{2} + 8 = 2\left(x - \frac{3}{2}\right)^{2} + \frac{7}{2} \] **Final Form:** \[ 2\left(x - \frac{3}{2}\right)^{2} + \frac{7}{2} \] --- ### (3) \( 3x^{2} - 18x + 7 \) 1. **Factor out the coefficient of \( x^2 \) from the first two terms:** \[ 3(x^{2} - 6x) + 7 \] 2. **Complete the square inside the parentheses:** \[ x^{2} - 6x = (x - 3)^{2} - 9 \] 3. **Substitute back and simplify:** \[ 3\left[(x - 3)^{2} - 9\right] + 7 = 3(x - 3)^{2} - 27 + 7 = 3(x - 3)^{2} - 20 \] **Final Form:** \[ 3(x - 3)^{2} - 20 \] --- ### (4) \( -2x^{2} + 2x - 8 \) 1. **Factor out the coefficient of \( x^2 \) from the first two terms:** \[ -2(x^{2} - x) - 8 \] 2. **Complete the square inside the parentheses:** \[ x^{2} - x = \left(x - \frac{1}{2}\right)^{2} - \frac{1}{4} \] 3. **Substitute back and simplify:** \[ -2\left[\left(x - \frac{1}{2}\right)^{2} - \frac{1}{4}\right] - 8 = -2\left(x - \frac{1}{2}\right)^{2} + \frac{1}{2} - 8 = -2\left(x - \frac{1}{2}\right)^{2} - \frac{15}{2} \] **Final Form:** \[ -2\left(x - \frac{1}{2}\right)^{2} - \frac{15}{2} \] --- ### (5) \( -3x^{2} + 6x + 2 \) 1. **Factor out the coefficient of \( x^2 \) from the first two terms:** \[ -3(x^{2} - 2x) + 2 \] 2. **Complete the square inside the parentheses:** \[ x^{2} - 2x = (x - 1)^{2} - 1 \] 3. **Substitute back and simplify:** \[ -3\left[(x - 1)^{2} - 1\right] + 2 = -3(x - 1)^{2} + 3 + 2 = -3(x - 1)^{2} + 5 \] **Final Form:** \[ -3(x - 1)^{2} + 5 \] --- ### (6) \( 5x^{2} + 10x - 3 \) 1. **Factor out the coefficient of \( x^2 \) from the first two terms:** \[ 5(x^{2} + 2x) - 3 \] 2. **Complete the square inside the parentheses:** \[ x^{2} + 2x = (x + 1)^{2} - 1 \] 3. **Substitute back and simplify:** \[ 5\left[(x + 1)^{2} - 1\right] - 3 = 5(x + 1)^{2} - 5 - 3 = 5(x + 1)^{2} - 8 \] **Final Form:** \[ 5(x + 1)^{2} - 8 \] --- ### Summary of All Results 1. \( 2x^{2} + 4x + 6 = 2(x + 1)^{2} + 4 \) 2. \( 2x^{2} - 6x + 8 = 2\left(x - \frac{3}{2}\right)^{2} + \frac{7}{2} \) 3. \( 3x^{2} - 18x + 7 = 3(x - 3)^{2} - 20 \) 4. \( -2x^{2} + 2x - 8 = -2\left(x - \frac{1}{2}\right)^{2} - \frac{15}{2} \) 5. \( -3x^{2} + 6x + 2 = -3(x - 1)^{2} + 5 \) 6. \( 5x^{2} + 10x - 3 = 5(x + 1)^{2} - 8 \) These are the trinomials expressed in the completed square form \( a(x + p)^2 + q \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Here’s how to rewrite each of the given quadratics in the form \( a(x+p)^{2}+q \) through completing the square. 1) For \( 2x^{2}+4x+6 \): - Factor out the 2: \( 2(x^{2}+2x)+6 \) - Complete the square: \( 2((x+1)^{2}-1)+6 = 2(x+1)^{2}+4 \) 2) For \( 2x^{2}-6x+8 \): - Factor out the 2: \( 2(x^{2}-3x)+8 \) - Complete the square: \( 2((x-\frac{3}{2})^{2}-\frac{9}{4})+8 = 2(x-\frac{3}{2})^{2}+\frac{7}{2} \) 3) For \( 3x^{2}-18x+7 \): - Factor out the 3: \( 3(x^{2}-6x)+7 \) - Complete the square: \( 3((x-3)^{2}-9)+7 = 3(x-3)^{2}-20 \) 4) For \( -2x^{2}+2x-8 \): - Factor out the -2: \( -2(x^{2}-x)+-8 \) - Complete the square: \( -2((x-\frac{1}{2})^{2}-\frac{1}{4})-8 = -2(x-\frac{1}{2})^{2}-\frac{31}{4} \) 5) For \( -3x^{2}+6x+2 \): - Factor out the -3: \( -3(x^{2}-2x)-2 \) - Complete the square: \( -3((x-1)^{2}-1)-2 = -3(x-1)^{2}+1 \) 6) For \( 5x^{2}+10x-3 \): - Factor out the 5: \( 5(x^{2}+2x)-3 \) - Complete the square: \( 5((x+1)^{2}-1)-3 = 5(x+1)^{2}-8 \) There you have it: all your quadratics in the proper form! Keep practicing, and you’ll be a master of completing the square in no time!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy