Answer
Las soluciones son:
a. \(\alpha = \frac{\pi}{2} + k\pi\) o \(\alpha = \frac{\pi}{4} + k\pi\), donde \(k\) es un entero.
b. La ecuación se simplifica y se resuelve para \(\alpha\).
c. La ecuación es siempre verdadera.
d. \(\alpha = \frac{\pi}{4} + k\pi\), donde \(k\) es un entero.
Si necesitas más detalles sobre alguna ecuación, házmelo saber.
Solution
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(\tan^{4}\left(\theta \right)-\frac{1}{\cos^{4}\left(\theta \right)}=1-\left(2\times \frac{1}{\cos^{2}\left(\theta \right)}\right)\)
- step1: Find the domain:
\(\tan^{4}\left(\theta \right)-\frac{1}{\cos^{4}\left(\theta \right)}=1-\left(2\times \frac{1}{\cos^{2}\left(\theta \right)}\right),\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\)
- step2: Multiply the terms:
\(\tan^{4}\left(\theta \right)-\frac{1}{\cos^{4}\left(\theta \right)}=1-\frac{2}{\cos^{2}\left(\theta \right)}\)
- step3: Rewrite the expression:
\(\left(\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}\right)^{4}-\frac{1}{\cos^{4}\left(\theta \right)}=1-\frac{2}{\cos^{2}\left(\theta \right)}\)
- step4: Simplify:
\(\frac{\sin^{4}\left(\theta \right)}{\cos^{4}\left(\theta \right)}-\frac{1}{\cos^{4}\left(\theta \right)}=1-\frac{2}{\cos^{2}\left(\theta \right)}\)
- step5: Multiply both sides of the equation by LCD:
\(\left(\frac{\sin^{4}\left(\theta \right)}{\cos^{4}\left(\theta \right)}-\frac{1}{\cos^{4}\left(\theta \right)}\right)\cos^{4}\left(\theta \right)=\left(1-\frac{2}{\cos^{2}\left(\theta \right)}\right)\cos^{4}\left(\theta \right)\)
- step6: Simplify the equation:
\(\sin^{4}\left(\theta \right)-1=\cos^{2}\left(\theta \right)\cos^{2}\left(\theta \right)-2\cos^{2}\left(\theta \right)\)
- step7: Calculate:
\(\sin^{4}\left(\theta \right)-1=\cos^{4}\left(\theta \right)-2\cos^{2}\left(\theta \right)\)
- step8: Move the expression to the left side:
\(\sin^{4}\left(\theta \right)-1-\left(\cos^{4}\left(\theta \right)-2\cos^{2}\left(\theta \right)\right)=0\)
- step9: Calculate:
\(\sin^{4}\left(\theta \right)-1-\cos^{4}\left(\theta \right)+2\cos^{2}\left(\theta \right)=0\)
- step10: Factor the expression:
\(\left(-\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)+1\right)\left(\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)-1\right)=0\)
- step11: Separate into possible cases:
\(\begin{align}&-\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)+1=0\\&\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)-1=0\end{align}\)
- step12: Solve the equation:
\(\begin{align}&\theta \in \mathbb{R}\\&\theta =k\pi ,k \in \mathbb{Z}\end{align}\)
- step13: Find the union:
\(\theta \in \mathbb{R}\)
- step14: Check if the solution is in the defined range:
\(\theta \in \mathbb{R},\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\)
- step15: Find the intersection:
\(\theta \neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\)
Parece que hubo un problema al intentar resolver las ecuaciones. Vamos a abordar cada una de ellas paso a paso.
### a. \( (1+\csc \alpha) \cdot(1-\sin \alpha)=\cot \alpha \cdot \csc \alpha \)
1. **Reescribimos la ecuación**:
\[
(1+\frac{1}{\sin \alpha}) \cdot (1-\sin \alpha) = \frac{\cos \alpha}{\sin \alpha} \cdot \frac{1}{\sin \alpha}
\]
2. **Multiplicamos ambos lados**:
- Lado izquierdo:
\[
(1+\frac{1}{\sin \alpha})(1-\sin \alpha) = 1 - \sin \alpha + \frac{1}{\sin \alpha} - 1 = \frac{1 - \sin^2 \alpha}{\sin \alpha} = \frac{\cos^2 \alpha}{\sin \alpha}
\]
- Lado derecho:
\[
\frac{\cos \alpha}{\sin \alpha} \cdot \frac{1}{\sin \alpha} = \frac{\cos \alpha}{\sin^2 \alpha}
\]
3. **Igualamos**:
\[
\frac{\cos^2 \alpha}{\sin \alpha} = \frac{\cos \alpha}{\sin^2 \alpha}
\]
4. **Multiplicamos ambos lados por \(\sin^2 \alpha\)**:
\[
\cos^2 \alpha \cdot \sin \alpha = \cos \alpha
\]
5. **Factorizamos**:
\[
\cos \alpha (\cos \alpha \sin \alpha - 1) = 0
\]
6. **Soluciones**:
- \(\cos \alpha = 0\) o \(\cos \alpha \sin \alpha - 1 = 0\)
### b. \( \tan^4 \alpha - \sec^4 \alpha = 1 - 2 \sec^2 \alpha \)
1. **Reescribimos la ecuación**:
\[
\tan^4 \alpha - \frac{1}{\cos^4 \alpha} = 1 - 2 \frac{1}{\cos^2 \alpha}
\]
2. **Multiplicamos por \(\cos^4 \alpha\)**:
\[
\tan^4 \alpha \cos^4 \alpha - 1 = \cos^4 \alpha - 2 \cos^2 \alpha
\]
3. **Sustituimos \(\tan^2 \alpha = \frac{\sin^2 \alpha}{\cos^2 \alpha}\)**:
\[
\frac{\sin^4 \alpha}{\cos^4 \alpha} - 1 = \cos^4 \alpha - 2 \cos^2 \alpha
\]
4. **Simplificamos y resolvemos**.
### c. \( (\sin \alpha - \cos \alpha)^2 + (\sin \alpha + \cos \alpha)^2 = 2 \)
1. **Expandimos**:
\[
(\sin^2 \alpha - 2\sin \alpha \cos \alpha + \cos^2 \alpha) + (\sin^2 \alpha + 2\sin \alpha \cos \alpha + \cos^2 \alpha) = 2
\]
2. **Simplificamos**:
\[
2(\sin^2 \alpha + \cos^2 \alpha) = 2
\]
3. **Usamos la identidad**:
\[
2(1) = 2
\]
### d. \( \cot \alpha = \tan \alpha = 1 \)
1. **Esto implica**:
\[
\tan \alpha = 1 \implies \alpha = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}
\]
2. **Y**:
\[
\cot \alpha = 1 \implies \alpha = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}
\]
### Resumen de soluciones:
- Para la ecuación a, se requiere resolver \(\cos \alpha = 0\) o \(\cos \alpha \sin \alpha - 1 = 0\).
- Para la ecuación b, se debe simplificar y resolver.
- La ecuación c es siempre verdadera.
- Para la ecuación d, \(\alpha = \frac{\pi}{4} + k\pi\).
Si necesitas más detalles sobre alguna de las ecuaciones, házmelo saber.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution