Question

Exercise DiXED: Simplify: 1. \( \frac{x^{2}+x-6}{3 x^{2}-12 x} \div \frac{\frac{x^{3}-2 x^{2}}{x^{2}-16} \cdot \frac{1}{x+4}}{x^{2}+3 x+2}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1} \)

Ask by Harrington Page. in South Africa
Jan 31,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The simplified expression is: \[ \frac{x^{7}+11x^{6}+35x^{5}-7x^{4}-196x^{3}-196x^{2}+160x+192}{-3x^{5}-42x^{4}+66x^{3}+528x^{2}+576x} \]

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{\frac{\left(x^{3}-2x^{2}\right)}{\left(x^{2}-16\right)}\times \left(\frac{1}{\left(x+4\right)}\right)}{\left(x^{2}+3x+2\right)}-\left(\frac{1}{\left(x^{2}+x-2\right)}\right)-\left(\frac{1}{\left(x^{2}-1\right)}\right)\) - step1: Remove the parentheses: \(\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \left(\frac{1}{x+4}\right)}{x^{2}+3x+2}-\left(\frac{1}{x^{2}+x-2}\right)-\left(\frac{1}{x^{2}-1}\right)\) - step2: Remove the parentheses: \(\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}}{x^{2}+3x+2}-\left(\frac{1}{x^{2}+x-2}\right)-\left(\frac{1}{x^{2}-1}\right)\) - step3: Remove the parentheses: \(\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}}{x^{2}+3x+2}-\frac{1}{x^{2}+x-2}-\left(\frac{1}{x^{2}-1}\right)\) - step4: Remove the parentheses: \(\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}}{x^{2}+3x+2}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1}\) - step5: Multiply the terms: \(\frac{\frac{x^{3}-2x^{2}}{\left(x^{2}-16\right)\left(x+4\right)}}{x^{2}+3x+2}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1}\) - step6: Divide the terms: \(\frac{x^{3}-2x^{2}}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1}\) - step7: Factor the expression: \(\frac{x^{3}-2x^{2}}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)}-\frac{1}{\left(x-1\right)\left(x+2\right)}-\frac{1}{\left(x+1\right)\left(x-1\right)}\) - step8: Reduce fractions to a common denominator: \(\frac{\left(x^{3}-2x^{2}\right)\left(x-1\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}-\frac{\left(x^{2}-16\right)\left(x+4\right)\left(x+1\right)}{\left(x-1\right)\left(x+2\right)\left(x^{2}-16\right)\left(x+4\right)\left(x+1\right)}-\frac{\left(x+2\right)\left(x^{2}-16\right)\left(x+4\right)}{\left(x+1\right)\left(x-1\right)\left(x+2\right)\left(x^{2}-16\right)\left(x+4\right)}\) - step9: Rewrite the expression: \(\frac{\left(x^{3}-2x^{2}\right)\left(x-1\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}-\frac{\left(x^{2}-16\right)\left(x+4\right)\left(x+1\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}-\frac{\left(x+2\right)\left(x^{2}-16\right)\left(x+4\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}\) - step10: Transform the expression: \(\frac{\left(x^{3}-2x^{2}\right)\left(x-1\right)-\left(x^{2}-16\right)\left(x+4\right)\left(x+1\right)-\left(x+2\right)\left(x^{2}-16\right)\left(x+4\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}\) - step11: Multiply the terms: \(\frac{x^{4}-3x^{3}+2x^{2}-\left(x^{2}-16\right)\left(x+4\right)\left(x+1\right)-\left(x+2\right)\left(x^{2}-16\right)\left(x+4\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}\) - step12: Multiply the terms: \(\frac{x^{4}-3x^{3}+2x^{2}-\left(x^{4}+5x^{3}-12x^{2}-80x-64\right)-\left(x+2\right)\left(x^{2}-16\right)\left(x+4\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}\) - step13: Multiply the terms: \(\frac{x^{4}-3x^{3}+2x^{2}-\left(x^{4}+5x^{3}-12x^{2}-80x-64\right)-\left(x^{4}+6x^{3}-8x^{2}-96x-128\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}\) - step14: Calculate: \(\frac{-x^{4}-14x^{3}+22x^{2}+176x+192}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}\) - step15: Simplify: \(\frac{-x^{4}-14x^{3}+22x^{2}+176x+192}{\left(x+4\right)^{2}\left(x-1\right)\left(x^{3}-x^{2}-10x-8\right)}\) - step16: Expand the expression: \(\frac{-x^{4}-14x^{3}+22x^{2}+176x+192}{x^{6}+6x^{5}-9x^{4}-102x^{3}-120x^{2}+96x+128}\) Calculate or simplify the expression \( (x^2+x-6)/(3*x^2-12*x) / ((x^3-2*x^2)/(x^2-16)*(1/(x+4))/(x^2+3*x+2)-(1/(x^2+x-2))-(1/(x^2-1))) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\frac{\left(x^{2}+x-6\right)}{\left(3x^{2}-12x\right)}}{\left(\frac{\frac{\left(x^{3}-2x^{2}\right)}{\left(x^{2}-16\right)}\times \left(\frac{1}{\left(x+4\right)}\right)}{\left(x^{2}+3x+2\right)}-\left(\frac{1}{\left(x^{2}+x-2\right)}\right)-\left(\frac{1}{\left(x^{2}-1\right)}\right)\right)}\) - step1: Remove the parentheses: \(\frac{\frac{x^{2}+x-6}{3x^{2}-12x}}{\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \left(\frac{1}{x+4}\right)}{x^{2}+3x+2}-\left(\frac{1}{x^{2}+x-2}\right)-\left(\frac{1}{x^{2}-1}\right)}\) - step2: Remove the parentheses: \(\frac{\frac{x^{2}+x-6}{3x^{2}-12x}}{\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}}{x^{2}+3x+2}-\left(\frac{1}{x^{2}+x-2}\right)-\left(\frac{1}{x^{2}-1}\right)}\) - step3: Remove the parentheses: \(\frac{\frac{x^{2}+x-6}{3x^{2}-12x}}{\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}}{x^{2}+3x+2}-\frac{1}{x^{2}+x-2}-\left(\frac{1}{x^{2}-1}\right)}\) - step4: Remove the parentheses: \(\frac{\frac{x^{2}+x-6}{3x^{2}-12x}}{\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}}{x^{2}+3x+2}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1}}\) - step5: Multiply the terms: \(\frac{\frac{x^{2}+x-6}{3x^{2}-12x}}{\frac{\frac{x^{3}-2x^{2}}{\left(x^{2}-16\right)\left(x+4\right)}}{x^{2}+3x+2}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1}}\) - step6: Divide the terms: \(\frac{\frac{x^{2}+x-6}{3x^{2}-12x}}{\frac{x^{3}-2x^{2}}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1}}\) - step7: Subtract the terms: \(\frac{\frac{x^{2}+x-6}{3x^{2}-12x}}{\frac{-x^{4}-14x^{3}+22x^{2}+176x+192}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}}\) - step8: Multiply by the reciprocal: \(\frac{x^{2}+x-6}{3x^{2}-12x}\times \frac{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}{-x^{4}-14x^{3}+22x^{2}+176x+192}\) - step9: Rewrite the expression: \(\frac{x^{2}+x-6}{3x\left(x-4\right)}\times \frac{\left(x-4\right)\left(x+4\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}{-x^{4}-14x^{3}+22x^{2}+176x+192}\) - step10: Reduce the fraction: \(\frac{x^{2}+x-6}{3x}\times \frac{\left(x+4\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}{-x^{4}-14x^{3}+22x^{2}+176x+192}\) - step11: Multiply the terms: \(\frac{\left(x^{2}+x-6\right)\left(x+4\right)^{2}\left(x^{2}+3x+2\right)\left(x-1\right)}{3x\left(-x^{4}-14x^{3}+22x^{2}+176x+192\right)}\) - step12: Expand the expression: \(\frac{x^{7}+11x^{6}+35x^{5}-7x^{4}-196x^{3}-196x^{2}+160x+192}{-3x^{5}-42x^{4}+66x^{3}+528x^{2}+576x}\) To simplify the expression \[ \frac{x^{2}+x-6}{3 x^{2}-12 x} \div \left( \frac{\frac{x^{3}-2 x^{2}}{x^{2}-16} \cdot \frac{1}{x+4}}{x^{2}+3 x+2}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1} \right), \] we will break it down step by step. ### Step 1: Simplify the Denominator First, we simplify the denominator: \[ \frac{x^{3}-2 x^{2}}{x^{2}-16} \cdot \frac{1}{x+4} \div (x^{2}+3 x+2) - \frac{1}{x^{2}+x-2} - \frac{1}{x^{2}-1}. \] From our calculations, we found that: \[ \frac{x^{3}-2 x^{2}}{x^{2}-16} \cdot \frac{1}{x+4} = \frac{-x^{4}-14x^{3}+22x^{2}+176x+192}{x^{6}+6x^{5}-9x^{4}-102x^{3}-120x^{2}+96x+128}. \] ### Step 2: Substitute Back into the Original Expression Now, substituting this back into the original expression, we have: \[ \frac{x^{2}+x-6}{3 x^{2}-12 x} \div \left( \frac{-x^{4}-14x^{3}+22x^{2}+176x+192}{x^{6}+6x^{5}-9x^{4}-102x^{3}-120x^{2}+96x+128} \right) - \frac{1}{x^{2}+x-2} - \frac{1}{x^{2}-1}. \] ### Step 3: Simplify the Entire Expression Now, we can simplify the entire expression: \[ \frac{x^{2}+x-6}{3 x^{2}-12 x} \cdot \frac{x^{6}+6x^{5}-9x^{4}-102x^{3}-120x^{2}+96x+128}{-x^{4}-14x^{3}+22x^{2}+176x+192}. \] After performing the calculations, we find that the entire expression simplifies to: \[ \frac{x^{7}+11x^{6}+35x^{5}-7x^{4}-196x^{3}-196x^{2}+160x+192}{-3x^{5}-42x^{4}+66x^{3}+528x^{2}+576x}. \] ### Final Result Thus, the simplified form of the original expression is: \[ \frac{x^{7}+11x^{6}+35x^{5}-7x^{4}-196x^{3}-196x^{2}+160x+192}{-3x^{5}-42x^{4}+66x^{3}+528x^{2}+576x}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the given expression, let's begin step-by-step. First, let's simplify the expression inside the division: 1. **The denominator:** \[ \frac{\frac{x^{3}-2 x^{2}}{x^{2}-16} \cdot \frac{1}{x+4}}{x^{2}+3 x+2}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1} \] Start with \( \frac{x^{3}-2 x^{2}}{x^{2}-16} \): - Factor \( x^{3}-2 x^{2} = x^{2}(x-2) \). - Factor \( x^{2}-16 = (x-4)(x+4) \). So, \[ \frac{x^{2}(x-2)}{(x-4)(x+4)} \] Now multiplying by \( \frac{1}{x+4} \): \[ \frac{x^{2}(x-2)}{(x-4)(x+4)} \cdot \frac{1}{x+4} = \frac{x^{2}(x-2)}{(x-4)(x+4)^{2}} \] Next, we need to simplify \( x^{2} + 3x + 2 \): - Factor \( x^{2} + 3x + 2 = (x+1)(x+2) \). Now we have: \[ \frac{x^{2}(x-2)}{(x-4)(x+4)^{2}} \cdot \frac{1}{(x+1)(x+2)} = \frac{x^{2}(x-2)}{(x-4)(x+4)^{2}(x+1)(x+2)} \] 2. **Subtracting terms from the denominator:** \(-\frac{1}{x^{2}+x-2}\): - Factor \( x^{2}+x-2 = (x+2)(x-1) \). So, \[ -\frac{1}{(x+2)(x-1)} \] And for \(-\frac{1}{x^{2}-1}\): - Factor \( x^{2}-1 = (x-1)(x+1) \). So, \[ -\frac{1}{(x-1)(x+1)} \] Combining all, we need a common denominator to simplify: \[ \frac{x^{2}(x-2)}{(x-4)(x+4)^{2}(x+1)(x+2)} - \frac{1}{(x+2)(x-1)} - \frac{1}{(x-1)(x+1)} \] The common denominator can be taken as: \((x-4)(x+4)^{2}(x+1)(x+2)(x-1)\). Putting it all together, the full expression simplifies to: Now we can use the simplified form back into the original expression where we are dividing \( \frac{x^{2}+x-6}{3x^{2}-12x} \) by this result, leading to a complex rational function that can be simplified step-by-step through factor cancellation, including finding roots and using polynomial long division if necessary. This makes simplifying this expression a delightful puzzle filled with beautifully intertwined algebraic threads!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy