Pregunta

Exercise DiXED: Simplify: 1. \( \frac{x^{2}+x-6}{3 x^{2}-12 x} \div \frac{\frac{x^{3}-2 x^{2}}{x^{2}-16} \cdot \frac{1}{x+4}}{x^{2}+3 x+2}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1} \)

Ask by Harrington Page. in South Africa
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified expression is: \[ \frac{x^{7}+11x^{6}+35x^{5}-7x^{4}-196x^{3}-196x^{2}+160x+192}{-3x^{5}-42x^{4}+66x^{3}+528x^{2}+576x} \]

Solución

Simplify the expression by following steps: - step0: Solution: \(\frac{\frac{\left(x^{3}-2x^{2}\right)}{\left(x^{2}-16\right)}\times \left(\frac{1}{\left(x+4\right)}\right)}{\left(x^{2}+3x+2\right)}-\left(\frac{1}{\left(x^{2}+x-2\right)}\right)-\left(\frac{1}{\left(x^{2}-1\right)}\right)\) - step1: Remove the parentheses: \(\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \left(\frac{1}{x+4}\right)}{x^{2}+3x+2}-\left(\frac{1}{x^{2}+x-2}\right)-\left(\frac{1}{x^{2}-1}\right)\) - step2: Remove the parentheses: \(\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}}{x^{2}+3x+2}-\left(\frac{1}{x^{2}+x-2}\right)-\left(\frac{1}{x^{2}-1}\right)\) - step3: Remove the parentheses: \(\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}}{x^{2}+3x+2}-\frac{1}{x^{2}+x-2}-\left(\frac{1}{x^{2}-1}\right)\) - step4: Remove the parentheses: \(\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}}{x^{2}+3x+2}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1}\) - step5: Multiply the terms: \(\frac{\frac{x^{3}-2x^{2}}{\left(x^{2}-16\right)\left(x+4\right)}}{x^{2}+3x+2}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1}\) - step6: Divide the terms: \(\frac{x^{3}-2x^{2}}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1}\) - step7: Factor the expression: \(\frac{x^{3}-2x^{2}}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)}-\frac{1}{\left(x-1\right)\left(x+2\right)}-\frac{1}{\left(x+1\right)\left(x-1\right)}\) - step8: Reduce fractions to a common denominator: \(\frac{\left(x^{3}-2x^{2}\right)\left(x-1\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}-\frac{\left(x^{2}-16\right)\left(x+4\right)\left(x+1\right)}{\left(x-1\right)\left(x+2\right)\left(x^{2}-16\right)\left(x+4\right)\left(x+1\right)}-\frac{\left(x+2\right)\left(x^{2}-16\right)\left(x+4\right)}{\left(x+1\right)\left(x-1\right)\left(x+2\right)\left(x^{2}-16\right)\left(x+4\right)}\) - step9: Rewrite the expression: \(\frac{\left(x^{3}-2x^{2}\right)\left(x-1\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}-\frac{\left(x^{2}-16\right)\left(x+4\right)\left(x+1\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}-\frac{\left(x+2\right)\left(x^{2}-16\right)\left(x+4\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}\) - step10: Transform the expression: \(\frac{\left(x^{3}-2x^{2}\right)\left(x-1\right)-\left(x^{2}-16\right)\left(x+4\right)\left(x+1\right)-\left(x+2\right)\left(x^{2}-16\right)\left(x+4\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}\) - step11: Multiply the terms: \(\frac{x^{4}-3x^{3}+2x^{2}-\left(x^{2}-16\right)\left(x+4\right)\left(x+1\right)-\left(x+2\right)\left(x^{2}-16\right)\left(x+4\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}\) - step12: Multiply the terms: \(\frac{x^{4}-3x^{3}+2x^{2}-\left(x^{4}+5x^{3}-12x^{2}-80x-64\right)-\left(x+2\right)\left(x^{2}-16\right)\left(x+4\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}\) - step13: Multiply the terms: \(\frac{x^{4}-3x^{3}+2x^{2}-\left(x^{4}+5x^{3}-12x^{2}-80x-64\right)-\left(x^{4}+6x^{3}-8x^{2}-96x-128\right)}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}\) - step14: Calculate: \(\frac{-x^{4}-14x^{3}+22x^{2}+176x+192}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}\) - step15: Simplify: \(\frac{-x^{4}-14x^{3}+22x^{2}+176x+192}{\left(x+4\right)^{2}\left(x-1\right)\left(x^{3}-x^{2}-10x-8\right)}\) - step16: Expand the expression: \(\frac{-x^{4}-14x^{3}+22x^{2}+176x+192}{x^{6}+6x^{5}-9x^{4}-102x^{3}-120x^{2}+96x+128}\) Calculate or simplify the expression \( (x^2+x-6)/(3*x^2-12*x) / ((x^3-2*x^2)/(x^2-16)*(1/(x+4))/(x^2+3*x+2)-(1/(x^2+x-2))-(1/(x^2-1))) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\frac{\left(x^{2}+x-6\right)}{\left(3x^{2}-12x\right)}}{\left(\frac{\frac{\left(x^{3}-2x^{2}\right)}{\left(x^{2}-16\right)}\times \left(\frac{1}{\left(x+4\right)}\right)}{\left(x^{2}+3x+2\right)}-\left(\frac{1}{\left(x^{2}+x-2\right)}\right)-\left(\frac{1}{\left(x^{2}-1\right)}\right)\right)}\) - step1: Remove the parentheses: \(\frac{\frac{x^{2}+x-6}{3x^{2}-12x}}{\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \left(\frac{1}{x+4}\right)}{x^{2}+3x+2}-\left(\frac{1}{x^{2}+x-2}\right)-\left(\frac{1}{x^{2}-1}\right)}\) - step2: Remove the parentheses: \(\frac{\frac{x^{2}+x-6}{3x^{2}-12x}}{\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}}{x^{2}+3x+2}-\left(\frac{1}{x^{2}+x-2}\right)-\left(\frac{1}{x^{2}-1}\right)}\) - step3: Remove the parentheses: \(\frac{\frac{x^{2}+x-6}{3x^{2}-12x}}{\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}}{x^{2}+3x+2}-\frac{1}{x^{2}+x-2}-\left(\frac{1}{x^{2}-1}\right)}\) - step4: Remove the parentheses: \(\frac{\frac{x^{2}+x-6}{3x^{2}-12x}}{\frac{\frac{x^{3}-2x^{2}}{x^{2}-16}\times \frac{1}{x+4}}{x^{2}+3x+2}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1}}\) - step5: Multiply the terms: \(\frac{\frac{x^{2}+x-6}{3x^{2}-12x}}{\frac{\frac{x^{3}-2x^{2}}{\left(x^{2}-16\right)\left(x+4\right)}}{x^{2}+3x+2}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1}}\) - step6: Divide the terms: \(\frac{\frac{x^{2}+x-6}{3x^{2}-12x}}{\frac{x^{3}-2x^{2}}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1}}\) - step7: Subtract the terms: \(\frac{\frac{x^{2}+x-6}{3x^{2}-12x}}{\frac{-x^{4}-14x^{3}+22x^{2}+176x+192}{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}}\) - step8: Multiply by the reciprocal: \(\frac{x^{2}+x-6}{3x^{2}-12x}\times \frac{\left(x^{2}-16\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}{-x^{4}-14x^{3}+22x^{2}+176x+192}\) - step9: Rewrite the expression: \(\frac{x^{2}+x-6}{3x\left(x-4\right)}\times \frac{\left(x-4\right)\left(x+4\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}{-x^{4}-14x^{3}+22x^{2}+176x+192}\) - step10: Reduce the fraction: \(\frac{x^{2}+x-6}{3x}\times \frac{\left(x+4\right)\left(x+4\right)\left(x^{2}+3x+2\right)\left(x-1\right)}{-x^{4}-14x^{3}+22x^{2}+176x+192}\) - step11: Multiply the terms: \(\frac{\left(x^{2}+x-6\right)\left(x+4\right)^{2}\left(x^{2}+3x+2\right)\left(x-1\right)}{3x\left(-x^{4}-14x^{3}+22x^{2}+176x+192\right)}\) - step12: Expand the expression: \(\frac{x^{7}+11x^{6}+35x^{5}-7x^{4}-196x^{3}-196x^{2}+160x+192}{-3x^{5}-42x^{4}+66x^{3}+528x^{2}+576x}\) To simplify the expression \[ \frac{x^{2}+x-6}{3 x^{2}-12 x} \div \left( \frac{\frac{x^{3}-2 x^{2}}{x^{2}-16} \cdot \frac{1}{x+4}}{x^{2}+3 x+2}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1} \right), \] we will break it down step by step. ### Step 1: Simplify the Denominator First, we simplify the denominator: \[ \frac{x^{3}-2 x^{2}}{x^{2}-16} \cdot \frac{1}{x+4} \div (x^{2}+3 x+2) - \frac{1}{x^{2}+x-2} - \frac{1}{x^{2}-1}. \] From our calculations, we found that: \[ \frac{x^{3}-2 x^{2}}{x^{2}-16} \cdot \frac{1}{x+4} = \frac{-x^{4}-14x^{3}+22x^{2}+176x+192}{x^{6}+6x^{5}-9x^{4}-102x^{3}-120x^{2}+96x+128}. \] ### Step 2: Substitute Back into the Original Expression Now, substituting this back into the original expression, we have: \[ \frac{x^{2}+x-6}{3 x^{2}-12 x} \div \left( \frac{-x^{4}-14x^{3}+22x^{2}+176x+192}{x^{6}+6x^{5}-9x^{4}-102x^{3}-120x^{2}+96x+128} \right) - \frac{1}{x^{2}+x-2} - \frac{1}{x^{2}-1}. \] ### Step 3: Simplify the Entire Expression Now, we can simplify the entire expression: \[ \frac{x^{2}+x-6}{3 x^{2}-12 x} \cdot \frac{x^{6}+6x^{5}-9x^{4}-102x^{3}-120x^{2}+96x+128}{-x^{4}-14x^{3}+22x^{2}+176x+192}. \] After performing the calculations, we find that the entire expression simplifies to: \[ \frac{x^{7}+11x^{6}+35x^{5}-7x^{4}-196x^{3}-196x^{2}+160x+192}{-3x^{5}-42x^{4}+66x^{3}+528x^{2}+576x}. \] ### Final Result Thus, the simplified form of the original expression is: \[ \frac{x^{7}+11x^{6}+35x^{5}-7x^{4}-196x^{3}-196x^{2}+160x+192}{-3x^{5}-42x^{4}+66x^{3}+528x^{2}+576x}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify the given expression, let's begin step-by-step. First, let's simplify the expression inside the division: 1. **The denominator:** \[ \frac{\frac{x^{3}-2 x^{2}}{x^{2}-16} \cdot \frac{1}{x+4}}{x^{2}+3 x+2}-\frac{1}{x^{2}+x-2}-\frac{1}{x^{2}-1} \] Start with \( \frac{x^{3}-2 x^{2}}{x^{2}-16} \): - Factor \( x^{3}-2 x^{2} = x^{2}(x-2) \). - Factor \( x^{2}-16 = (x-4)(x+4) \). So, \[ \frac{x^{2}(x-2)}{(x-4)(x+4)} \] Now multiplying by \( \frac{1}{x+4} \): \[ \frac{x^{2}(x-2)}{(x-4)(x+4)} \cdot \frac{1}{x+4} = \frac{x^{2}(x-2)}{(x-4)(x+4)^{2}} \] Next, we need to simplify \( x^{2} + 3x + 2 \): - Factor \( x^{2} + 3x + 2 = (x+1)(x+2) \). Now we have: \[ \frac{x^{2}(x-2)}{(x-4)(x+4)^{2}} \cdot \frac{1}{(x+1)(x+2)} = \frac{x^{2}(x-2)}{(x-4)(x+4)^{2}(x+1)(x+2)} \] 2. **Subtracting terms from the denominator:** \(-\frac{1}{x^{2}+x-2}\): - Factor \( x^{2}+x-2 = (x+2)(x-1) \). So, \[ -\frac{1}{(x+2)(x-1)} \] And for \(-\frac{1}{x^{2}-1}\): - Factor \( x^{2}-1 = (x-1)(x+1) \). So, \[ -\frac{1}{(x-1)(x+1)} \] Combining all, we need a common denominator to simplify: \[ \frac{x^{2}(x-2)}{(x-4)(x+4)^{2}(x+1)(x+2)} - \frac{1}{(x+2)(x-1)} - \frac{1}{(x-1)(x+1)} \] The common denominator can be taken as: \((x-4)(x+4)^{2}(x+1)(x+2)(x-1)\). Putting it all together, the full expression simplifies to: Now we can use the simplified form back into the original expression where we are dividing \( \frac{x^{2}+x-6}{3x^{2}-12x} \) by this result, leading to a complex rational function that can be simplified step-by-step through factor cancellation, including finding roots and using polynomial long division if necessary. This makes simplifying this expression a delightful puzzle filled with beautifully intertwined algebraic threads!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad