Answer
A fair price to buy the bond today is \$18,000.00.
Solution
To find the fair price to pay for the bond today, we can use the present value formula for bonds. The price of a bond is the present value of its future cash flows, which consist of the interest payments and the face value at maturity.
### Known Conditions:
- Face Value (\( F \)): \( 18000 \)
- Interest Rate (\( r \)): \( 3.1\% \) or \( 0.031 \)
- Compounding Frequency: Semiannually (2 times a year)
- Number of Years (\( t \)): \( 14 \)
### Steps to Calculate the Fair Price:
1. **Calculate the number of periods (\( n \))**:
\[
n = t \times \text{compounding frequency} = 14 \times 2 = 28
\]
2. **Calculate the interest payment (\( PMT \))**:
\[
PMT = \frac{F \times r}{\text{compounding frequency}} = \frac{18000 \times 0.031}{2}
\]
3. **Calculate the present value of the interest payments**:
The present value of an annuity formula is:
\[
PV_{PMT} = PMT \times \left(1 - (1 + i)^{-n}\right) / i
\]
where \( i = \frac{r}{\text{compounding frequency}} = \frac{0.031}{2} \).
4. **Calculate the present value of the face value**:
The present value of a lump sum formula is:
\[
PV_{F} = \frac{F}{(1 + i)^{n}}
\]
5. **Add the present values to find the fair price**:
\[
Price = PV_{PMT} + PV_{F}
\]
Now, let's perform the calculations step by step.
### Step 1: Calculate \( n \)
\[
n = 14 \times 2 = 28
\]
### Step 2: Calculate \( PMT \)
\[
PMT = \frac{18000 \times 0.031}{2}
\]
### Step 3: Calculate \( i \)
\[
i = \frac{0.031}{2}
\]
### Step 4: Calculate \( PV_{PMT} \) and \( PV_{F} \)
Now, I will perform these calculations.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{18000\times 0.031}{2}\)
- step1: Multiply the numbers:
\(\frac{558}{2}\)
- step2: Reduce the fraction:
\(279\)
Calculate or simplify the expression \( 0.031 / 2 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{0.031}{2}\)
- step1: Convert the expressions:
\(\frac{\frac{31}{1000}}{2}\)
- step2: Multiply by the reciprocal:
\(\frac{31}{1000}\times \frac{1}{2}\)
- step3: Multiply the fractions:
\(\frac{31}{1000\times 2}\)
- step4: Multiply:
\(\frac{31}{2000}\)
Calculate or simplify the expression \( 18000 / (1 + 0.0155)^{28} \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{18000}{\left(1+0.0155\right)^{28}}\)
- step1: Add the numbers:
\(\frac{18000}{1.0155^{28}}\)
- step2: Convert the expressions:
\(\frac{18000}{\left(\frac{2031}{2000}\right)^{28}}\)
- step3: Simplify the expression:
\(\frac{18000}{\frac{2031^{28}}{2000^{28}}}\)
- step4: Rewrite the expression:
\(\frac{18000\times 2000^{28}}{2031^{28}}\)
Calculate or simplify the expression \( 279 * (1 - (1 + 0.0155)^{-28}) / 0.0155 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{279\left(1-\left(1+0.0155\right)^{-28}\right)}{0.0155}\)
- step1: Add the numbers:
\(\frac{279\left(1-1.0155^{-28}\right)}{0.0155}\)
- step2: Convert the expressions:
\(\frac{279\left(1-\left(\frac{2031}{2000}\right)^{-28}\right)}{0.0155}\)
- step3: Subtract the numbers:
\(\frac{279\times \frac{2031^{28}-2000^{28}}{2031^{28}}}{0.0155}\)
- step4: Multiply the numbers:
\(\frac{\frac{31\times 2031^{28}-31\times 2000^{28}}{3^{26}\times 677^{28}}}{0.0155}\)
- step5: Convert the expressions:
\(\frac{\frac{31\times 2031^{28}-31\times 2000^{28}}{3^{26}\times 677^{28}}}{\frac{31}{2000}}\)
- step6: Multiply by the reciprocal:
\(\frac{31\times 2031^{28}-31\times 2000^{28}}{3^{26}\times 677^{28}}\times \frac{2000}{31}\)
- step7: Rewrite the expression:
\(\frac{31\left(2031^{28}-2000^{28}\right)}{3^{26}\times 677^{28}}\times \frac{2000}{31}\)
- step8: Reduce the numbers:
\(\frac{2031^{28}-2000^{28}}{3^{26}\times 677^{28}}\times 2000\)
- step9: Multiply the fractions:
\(\frac{\left(2031^{28}-2000^{28}\right)\times 2000}{3^{26}\times 677^{28}}\)
- step10: Multiply:
\(\frac{2031^{28}\times 2000-2000^{29}}{3^{26}\times 677^{28}}\)
Calculate or simplify the expression \( 6298.688836 + 11701.311164 \).
Calculate the value by following steps:
- step0: Calculate:
\(6298.688836+11701.311164\)
- step1: Add the numbers:
\(18000\)
Now that we have completed the calculations, let's summarize the results:
1. **Interest Payment (\( PMT \))**:
\[
PMT = 279
\]
2. **Interest Rate per Period (\( i \))**:
\[
i = 0.0155
\]
3. **Present Value of Interest Payments (\( PV_{PMT} \))**:
\[
PV_{PMT} \approx 6298.69
\]
4. **Present Value of Face Value (\( PV_{F} \))**:
\[
PV_{F} \approx 11701.31
\]
5. **Total Price of the Bond**:
\[
Price = PV_{PMT} + PV_{F} \approx 6298.69 + 11701.31 = 18000
\]
Thus, the fair price to buy the bond today would be \( \$ 18,000.00 \).
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution