Pregunta
upstudy study bank question image url

A bond with a face value of \( \$ 18,000 \) and a \( 3.1 \% \) interest rate (compounded semiannually) will mature in 14 years. What is a fair price to pay for the bond today? A fair price to buy the bond at would be \( \$ \square \). (Do not round until the final answer. Then round to the nearest cent as needed.)

Ask by Craig Ruiz. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

A fair price to buy the bond today is \$18,000.00.

Solución

To find the fair price to pay for the bond today, we can use the present value formula for bonds. The price of a bond is the present value of its future cash flows, which consist of the interest payments and the face value at maturity. ### Known Conditions: - Face Value (\( F \)): \( 18000 \) - Interest Rate (\( r \)): \( 3.1\% \) or \( 0.031 \) - Compounding Frequency: Semiannually (2 times a year) - Number of Years (\( t \)): \( 14 \) ### Steps to Calculate the Fair Price: 1. **Calculate the number of periods (\( n \))**: \[ n = t \times \text{compounding frequency} = 14 \times 2 = 28 \] 2. **Calculate the interest payment (\( PMT \))**: \[ PMT = \frac{F \times r}{\text{compounding frequency}} = \frac{18000 \times 0.031}{2} \] 3. **Calculate the present value of the interest payments**: The present value of an annuity formula is: \[ PV_{PMT} = PMT \times \left(1 - (1 + i)^{-n}\right) / i \] where \( i = \frac{r}{\text{compounding frequency}} = \frac{0.031}{2} \). 4. **Calculate the present value of the face value**: The present value of a lump sum formula is: \[ PV_{F} = \frac{F}{(1 + i)^{n}} \] 5. **Add the present values to find the fair price**: \[ Price = PV_{PMT} + PV_{F} \] Now, let's perform the calculations step by step. ### Step 1: Calculate \( n \) \[ n = 14 \times 2 = 28 \] ### Step 2: Calculate \( PMT \) \[ PMT = \frac{18000 \times 0.031}{2} \] ### Step 3: Calculate \( i \) \[ i = \frac{0.031}{2} \] ### Step 4: Calculate \( PV_{PMT} \) and \( PV_{F} \) Now, I will perform these calculations. Calculate the value by following steps: - step0: Calculate: \(\frac{18000\times 0.031}{2}\) - step1: Multiply the numbers: \(\frac{558}{2}\) - step2: Reduce the fraction: \(279\) Calculate or simplify the expression \( 0.031 / 2 \). Calculate the value by following steps: - step0: Calculate: \(\frac{0.031}{2}\) - step1: Convert the expressions: \(\frac{\frac{31}{1000}}{2}\) - step2: Multiply by the reciprocal: \(\frac{31}{1000}\times \frac{1}{2}\) - step3: Multiply the fractions: \(\frac{31}{1000\times 2}\) - step4: Multiply: \(\frac{31}{2000}\) Calculate or simplify the expression \( 18000 / (1 + 0.0155)^{28} \). Calculate the value by following steps: - step0: Calculate: \(\frac{18000}{\left(1+0.0155\right)^{28}}\) - step1: Add the numbers: \(\frac{18000}{1.0155^{28}}\) - step2: Convert the expressions: \(\frac{18000}{\left(\frac{2031}{2000}\right)^{28}}\) - step3: Simplify the expression: \(\frac{18000}{\frac{2031^{28}}{2000^{28}}}\) - step4: Rewrite the expression: \(\frac{18000\times 2000^{28}}{2031^{28}}\) Calculate or simplify the expression \( 279 * (1 - (1 + 0.0155)^{-28}) / 0.0155 \). Calculate the value by following steps: - step0: Calculate: \(\frac{279\left(1-\left(1+0.0155\right)^{-28}\right)}{0.0155}\) - step1: Add the numbers: \(\frac{279\left(1-1.0155^{-28}\right)}{0.0155}\) - step2: Convert the expressions: \(\frac{279\left(1-\left(\frac{2031}{2000}\right)^{-28}\right)}{0.0155}\) - step3: Subtract the numbers: \(\frac{279\times \frac{2031^{28}-2000^{28}}{2031^{28}}}{0.0155}\) - step4: Multiply the numbers: \(\frac{\frac{31\times 2031^{28}-31\times 2000^{28}}{3^{26}\times 677^{28}}}{0.0155}\) - step5: Convert the expressions: \(\frac{\frac{31\times 2031^{28}-31\times 2000^{28}}{3^{26}\times 677^{28}}}{\frac{31}{2000}}\) - step6: Multiply by the reciprocal: \(\frac{31\times 2031^{28}-31\times 2000^{28}}{3^{26}\times 677^{28}}\times \frac{2000}{31}\) - step7: Rewrite the expression: \(\frac{31\left(2031^{28}-2000^{28}\right)}{3^{26}\times 677^{28}}\times \frac{2000}{31}\) - step8: Reduce the numbers: \(\frac{2031^{28}-2000^{28}}{3^{26}\times 677^{28}}\times 2000\) - step9: Multiply the fractions: \(\frac{\left(2031^{28}-2000^{28}\right)\times 2000}{3^{26}\times 677^{28}}\) - step10: Multiply: \(\frac{2031^{28}\times 2000-2000^{29}}{3^{26}\times 677^{28}}\) Calculate or simplify the expression \( 6298.688836 + 11701.311164 \). Calculate the value by following steps: - step0: Calculate: \(6298.688836+11701.311164\) - step1: Add the numbers: \(18000\) Now that we have completed the calculations, let's summarize the results: 1. **Interest Payment (\( PMT \))**: \[ PMT = 279 \] 2. **Interest Rate per Period (\( i \))**: \[ i = 0.0155 \] 3. **Present Value of Interest Payments (\( PV_{PMT} \))**: \[ PV_{PMT} \approx 6298.69 \] 4. **Present Value of Face Value (\( PV_{F} \))**: \[ PV_{F} \approx 11701.31 \] 5. **Total Price of the Bond**: \[ Price = PV_{PMT} + PV_{F} \approx 6298.69 + 11701.31 = 18000 \] Thus, the fair price to buy the bond today would be \( \$ 18,000.00 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the fair price of the bond today, we need to find the present value of the future cash flows from the bond, which includes the interest payments and the face value at maturity. 1. **Calculate the semiannual interest payment:** \[ \text{Interest payment} = \text{Face Value} \times \text{Interest Rate} \div 2 = 18,000 \times 0.031 \div 2 = 279. \] 2. **Number of periods (n):** Since the bond matures in 14 years and interest is compounded semiannually, \[ n = 14 \times 2 = 28 \text{ periods}. \] 3. **Semiannual interest rate (i):** \[ i = \frac{3.1\%}{2} = 0.031 \div 2 = 0.0155. \] 4. **Calculate the present value of the interest payments (an annuity):** \[ PV_{\text{interest}} = \text{Interest Payment} \times \left( \frac{1 - (1 + i)^{-n}}{i} \right) = 279 \times \left( \frac{1 - (1 + 0.0155)^{-28}}{0.0155} \right). \] 5. **Calculate the present value of the face value (lump sum):** \[ PV_{\text{face value}} = \text{Face Value} \times (1 + i)^{-n} = 18,000 \times (1 + 0.0155)^{-28}. \] Now, calculate these values step by step: - **For the interest payments:** \[ PV_{\text{interest}} = 279 \times \left( \frac{1 - (1 + 0.0155)^{-28}}{0.0155} \right) \approx 279 \times 17.6421 \approx 4926.45. \] - **For the face value:** \[ PV_{\text{face value}} = 18,000 \times (1 + 0.0155)^{-28} \approx 18,000 \times 0.6349 \approx 11428.20. \] 6. **Total present value (fair price of the bond):** \[ \text{Total PV} = PV_{\text{interest}} + PV_{\text{face value}} \approx 4926.45 + 11428.20 \approx 16354.65. \] Hence, a fair price to buy the bond today would be \( \$ 16,354.65 \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad