Question
upstudy study bank question image url

Find \( f+g, f-g, f g \), and \( \frac{-}{g} \). Determine the domain for each function. \[ f(x)=\sqrt{x-3} ; g(x)=\sqrt{x-8} \] \( (f+g)(x)=\square \)

Ask by Bradley French. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( (f+g)(x) = \sqrt{x - 3} + \sqrt{x - 8} \) with domain \( x \geq 8 \).

Solution

We are given   f(x) = √(x – 3)  and  g(x) = √(x – 8). Remember that for a square root function √(h(x)) to be defined (in ℝ), the expression h(x) must be ≥ 0. • For f(x) = √(x – 3): x – 3 ≥ 0 ⟹ x ≥ 3. • For g(x) = √(x – 8): x – 8 ≥ 0 ⟹ x ≥ 8. Thus, the domain of f(x) is [3, ∞) and the domain of g(x) is [8, ∞). When combining functions, we must take the intersection of their domains. Below are the four operations with their expressions and domains. ──────────────────────── 1. (f + g)(x) ──────────────────────── We have:   (f + g)(x) = f(x) + g(x) = √(x – 3) + √(x – 8). The domain is the intersection of the domains of f and g, that is, x must satisfy both x ≥ 3 and x ≥ 8. Thus, the domain is:   x ≥ 8  (i.e. [8, ∞)). ──────────────────────── 2. (f – g)(x) ──────────────────────── We have:   (f – g)(x) = f(x) – g(x) = √(x – 3) – √(x – 8). Again, the domain is x ≥ 8 (i.e. [8, ∞)). ──────────────────────── 3. (f · g)(x) ──────────────────────── We have:   (f · g)(x) = f(x) · g(x) = √(x – 3) · √(x – 8) = √[(x – 3)(x – 8)]. The function is defined only when both square roots exist, i.e. when x is in the intersection of the domains of f and g (x ≥ 8). Thus, the domain is:   x ≥ 8 (i.e. [8, ∞)). ──────────────────────── 4. (f / g)(x) ──────────────────────── (Note: The given notation “\( \frac{-}{g} \)” appears to be a typo. We interpret it as the quotient f/g.) We have:   (f / g)(x) = f(x) / g(x) = √(x – 3) / √(x – 8). For this quotient to be defined, in addition to needing x to be in the domain of both f and g (x ≥ 8), we must also have the denominator nonzero:   √(x – 8) ≠ 0 ⟹ x – 8 > 0 ⟹ x > 8. Thus, the domain of (f / g)(x) is:   x > 8 (i.e. (8, ∞)). ──────────────────────── Summary of Answers ──────────────────────── 1. (f + g)(x) = √(x – 3) + √(x – 8),  Domain: [8, ∞) 2. (f – g)(x) = √(x – 3) – √(x – 8),  Domain: [8, ∞) 3. (f · g)(x) = √[(x – 3)(x – 8)],  Domain: [8, ∞) 4. (f / g)(x) = √(x – 3) / √(x – 8),  Domain: (8, ∞) ──────────────────────── Answer for (f+g)(x):   (f+g)(x)= √(x – 3) + √(x – 8)  with Domain: [8, ∞). These are your final answers for the functions and their respective domains.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To find \( (f+g)(x) \), we simply add the two functions together: \[ (f + g)(x) = f(x) + g(x) = \sqrt{x - 3} + \sqrt{x - 8} \] Next, let's determine the domain for \( (f + g)(x) \). The square root functions require the expressions under the square roots to be non-negative: 1. For \( f(x) = \sqrt{x - 3} \), we need: \( x - 3 \geq 0 \) \( x \geq 3 \) 2. For \( g(x) = \sqrt{x - 8} \), we need: \( x - 8 \geq 0 \) \( x \geq 8 \) The domain of \( (f + g)(x) \) is determined by the intersection of these two conditions, so we need \( x \geq 8 \). Thus, the domain is \( [8, \infty) \). Now, let's calculate \( (f - g)(x) \): \[ (f - g)(x) = \sqrt{x - 3} - \sqrt{x - 8} \] The domain for \( (f - g)(x) \) is the same as that of \( (f + g)(x) \), which is \( [8, \infty) \). Next, we compute \( (f \cdot g)(x) \): \[ (f \cdot g)(x) = f(x) \cdot g(x) = \sqrt{x - 3} \cdot \sqrt{x - 8} = \sqrt{(x - 3)(x - 8)} \] The domain for \( (f \cdot g)(x) \) is also \( [8, \infty) \) since both component functions must be defined. Finally, let's define \( \frac{f}{g}(x) \): \[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x - 3}}{\sqrt{x - 8}} \] For this function to be defined, \( g(x) \) must not be zero, which means \( \sqrt{x - 8} \neq 0 \) or \( x \neq 8 \). Thus, the domain is \( (8, \infty) \). To summarize: \[ (f+g)(x) = \sqrt{x-3} + \sqrt{x-8} \quad \text{with domain } [8, \infty) \] \[ (f-g)(x) = \sqrt{x-3} - \sqrt{x-8} \quad \text{with domain } [8, \infty) \] \[ (f \cdot g)(x) = \sqrt{(x-3)(x-8)} \quad \text{with domain } [8, \infty) \] \[ \left(\frac{f}{g}\right)(x) = \frac{\sqrt{x-3}}{\sqrt{x-8}} \quad \text{with domain } (8, \infty) \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy