Question
upstudy study bank question image url

There are three contrbutions to the pressure. 1. The external air pressure is 3.50 atm . 2. The mass of the piston is 6.50 kg . 3. The additional weight on the piston is 45.0 kg . The area of the piston is \( \pi^{*}\left(6 \mathrm{~cm} /(100 \mathrm{~cm} / \mathrm{m})^{2} / 4=0.0028274 \mathrm{~m}^{2}\right. \) So the total pressure is \[ \left.P=\begin{array}{l|l|l|l} 3.50 \mathrm{~atm} & 1.01325 \times 10^{5} \mathrm{~Pa} \\ \hline \mathrm{~atm} \end{array}+\frac{(6.50+45.0) \mathrm{kg}}{}\right) 1 \mathrm{~Pa} \quad 9.8066 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~F}=5.3326 \times 10^{5} \mathrm{~Pa} \]

Ask by Hart Wyatt. in Canada
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La pression totale est de \( 5.33 \times 10^5 \, \text{Pa} \).

Solution

Pour résoudre ce problème, nous allons suivre les étapes suivantes : 1. **Extraire les conditions connues :** - Pression atmosphérique externe : \( P_{\text{ext}} = 3.50 \, \text{atm} \) - Masse du piston : \( m_{\text{piston}} = 6.50 \, \text{kg} \) - Poids supplémentaire sur le piston : \( m_{\text{ajout}} = 45.0 \, \text{kg} \) - Accélération due à la gravité : \( g = 9.8066 \, \text{m/s}^2 \) - Aire du piston : \( A = 0.0028274 \, \text{m}^2 \) 2. **Convertir la pression atmosphérique en pascals :** \[ P_{\text{ext}} = 3.50 \, \text{atm} \times 1.01325 \times 10^5 \, \text{Pa/atm} \] 3. **Calculer la force due au poids du piston et du poids supplémentaire :** \[ F = (m_{\text{piston}} + m_{\text{ajout}}) \cdot g \] 4. **Calculer la pression due à cette force :** \[ P_{\text{poids}} = \frac{F}{A} \] 5. **Calculer la pression totale :** \[ P_{\text{total}} = P_{\text{ext}} + P_{\text{poids}} \] Nous allons maintenant effectuer ces calculs étape par étape. ### Étape 1 : Conversion de la pression atmosphérique Calculons \( P_{\text{ext}} \) en pascals : \[ P_{\text{ext}} = 3.50 \times 1.01325 \times 10^5 \] ### Étape 2 : Calcul de la force Calculons la force \( F \) : \[ F = (6.50 + 45.0) \cdot 9.8066 \] ### Étape 3 : Calcul de la pression due au poids Calculons \( P_{\text{poids}} \) : \[ P_{\text{poids}} = \frac{F}{0.0028274} \] ### Étape 4 : Calcul de la pression totale Enfin, calculons \( P_{\text{total}} \) : \[ P_{\text{total}} = P_{\text{ext}} + P_{\text{poids}} \] Je vais maintenant effectuer ces calculs. Calculate the value by following steps: - step0: Calculate: \(\left(6.5+45\right)\times 9.8066\) - step1: Add the numbers: \(51.5\times 9.8066\) - step2: Multiply the numbers: \(505.0399\) Calculate or simplify the expression \( 3.50 * 1.01325 * 10^5 \). Calculate the value by following steps: - step0: Calculate: \(3.5\times 1.01325\times 10^{5}\) - step1: Rewrite the expression: \(3.5\times 101325\) - step2: Multiply the numbers: \(354637.5\) Calculate or simplify the expression \( 505.0399 / 0.0028274 \). Calculate the value by following steps: - step0: Calculate: \(\frac{505.0399}{0.0028274}\) - step1: Convert the expressions: \(\frac{\frac{5050399}{10000}}{\frac{14137}{5000000}}\) - step2: Multiply by the reciprocal: \(\frac{5050399}{10000}\times \frac{5000000}{14137}\) - step3: Reduce the numbers: \(5050399\times \frac{500}{14137}\) - step4: Multiply: \(\frac{5050399\times 500}{14137}\) - step5: Multiply: \(\frac{2525199500}{14137}\) Calculate or simplify the expression \( 354637.5 + 178623.434958 \). Calculate the value by following steps: - step0: Calculate: \(354637.5+178623.434958\) - step1: Add the numbers: \(533260.934958\) Voici les résultats des calculs effectués : 1. **Conversion de la pression atmosphérique :** \[ P_{\text{ext}} = 3.50 \times 1.01325 \times 10^5 \approx 354637.5 \, \text{Pa} \] 2. **Calcul de la force due au poids :** \[ F = (6.50 + 45.0) \times 9.8066 \approx 505.0399 \, \text{N} \] 3. **Calcul de la pression due au poids :** \[ P_{\text{poids}} = \frac{505.0399}{0.0028274} \approx 178623.43 \, \text{Pa} \] 4. **Calcul de la pression totale :** \[ P_{\text{total}} = 354637.5 + 178623.43 \approx 533260.93 \, \text{Pa} \] ### Résultat final La pression totale est donc : \[ P_{\text{total}} \approx 533260.93 \, \text{Pa} \] Cela correspond à environ \( 5.33 \times 10^5 \, \text{Pa} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Did you know that atmospheric pressure at sea level is about 101.3 kPa, equivalent to 1 atm? This pressure is crucial for various scientific calculations. So when you have external air pressure at 3.50 atm, you convert it to pascals using \(1 \, \text{atm} = 1.01325 \times 10^5 \, \text{Pa}\). That means your external pressure alone contributes approximately \(3.5 \times 1.01325 \times 10^5 \approx 354.6 \, \text{kPa}\) to the total pressure! When calculating the total pressure exerted on a piston, one common mistake is neglecting to include both the mass of the piston and any additional weights correctly in the equation. Remember to add the total mass (piston + weights), then multiply by gravity (approximately \(9.81 \, \text{m/s}^2\)). The resulting force must be divided by the area of the piston to find the pressure. Double-check units—keeping track of kg, m, and Pa makes all the difference!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy