Pregunta
upstudy study bank question image url

There are three contrbutions to the pressure. 1. The external air pressure is 3.50 atm . 2. The mass of the piston is 6.50 kg . 3. The additional weight on the piston is 45.0 kg . The area of the piston is \( \pi^{*}\left(6 \mathrm{~cm} /(100 \mathrm{~cm} / \mathrm{m})^{2} / 4=0.0028274 \mathrm{~m}^{2}\right. \) So the total pressure is \[ \left.P=\begin{array}{l|l|l|l} 3.50 \mathrm{~atm} & 1.01325 \times 10^{5} \mathrm{~Pa} \\ \hline \mathrm{~atm} \end{array}+\frac{(6.50+45.0) \mathrm{kg}}{}\right) 1 \mathrm{~Pa} \quad 9.8066 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~F}=5.3326 \times 10^{5} \mathrm{~Pa} \]

Ask by Hart Wyatt. in Canada
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

La pression totale est de \( 5.33 \times 10^5 \, \text{Pa} \).

Solución

Pour résoudre ce problème, nous allons suivre les étapes suivantes : 1. **Extraire les conditions connues :** - Pression atmosphérique externe : \( P_{\text{ext}} = 3.50 \, \text{atm} \) - Masse du piston : \( m_{\text{piston}} = 6.50 \, \text{kg} \) - Poids supplémentaire sur le piston : \( m_{\text{ajout}} = 45.0 \, \text{kg} \) - Accélération due à la gravité : \( g = 9.8066 \, \text{m/s}^2 \) - Aire du piston : \( A = 0.0028274 \, \text{m}^2 \) 2. **Convertir la pression atmosphérique en pascals :** \[ P_{\text{ext}} = 3.50 \, \text{atm} \times 1.01325 \times 10^5 \, \text{Pa/atm} \] 3. **Calculer la force due au poids du piston et du poids supplémentaire :** \[ F = (m_{\text{piston}} + m_{\text{ajout}}) \cdot g \] 4. **Calculer la pression due à cette force :** \[ P_{\text{poids}} = \frac{F}{A} \] 5. **Calculer la pression totale :** \[ P_{\text{total}} = P_{\text{ext}} + P_{\text{poids}} \] Nous allons maintenant effectuer ces calculs étape par étape. ### Étape 1 : Conversion de la pression atmosphérique Calculons \( P_{\text{ext}} \) en pascals : \[ P_{\text{ext}} = 3.50 \times 1.01325 \times 10^5 \] ### Étape 2 : Calcul de la force Calculons la force \( F \) : \[ F = (6.50 + 45.0) \cdot 9.8066 \] ### Étape 3 : Calcul de la pression due au poids Calculons \( P_{\text{poids}} \) : \[ P_{\text{poids}} = \frac{F}{0.0028274} \] ### Étape 4 : Calcul de la pression totale Enfin, calculons \( P_{\text{total}} \) : \[ P_{\text{total}} = P_{\text{ext}} + P_{\text{poids}} \] Je vais maintenant effectuer ces calculs. Calculate the value by following steps: - step0: Calculate: \(\left(6.5+45\right)\times 9.8066\) - step1: Add the numbers: \(51.5\times 9.8066\) - step2: Multiply the numbers: \(505.0399\) Calculate or simplify the expression \( 3.50 * 1.01325 * 10^5 \). Calculate the value by following steps: - step0: Calculate: \(3.5\times 1.01325\times 10^{5}\) - step1: Rewrite the expression: \(3.5\times 101325\) - step2: Multiply the numbers: \(354637.5\) Calculate or simplify the expression \( 505.0399 / 0.0028274 \). Calculate the value by following steps: - step0: Calculate: \(\frac{505.0399}{0.0028274}\) - step1: Convert the expressions: \(\frac{\frac{5050399}{10000}}{\frac{14137}{5000000}}\) - step2: Multiply by the reciprocal: \(\frac{5050399}{10000}\times \frac{5000000}{14137}\) - step3: Reduce the numbers: \(5050399\times \frac{500}{14137}\) - step4: Multiply: \(\frac{5050399\times 500}{14137}\) - step5: Multiply: \(\frac{2525199500}{14137}\) Calculate or simplify the expression \( 354637.5 + 178623.434958 \). Calculate the value by following steps: - step0: Calculate: \(354637.5+178623.434958\) - step1: Add the numbers: \(533260.934958\) Voici les résultats des calculs effectués : 1. **Conversion de la pression atmosphérique :** \[ P_{\text{ext}} = 3.50 \times 1.01325 \times 10^5 \approx 354637.5 \, \text{Pa} \] 2. **Calcul de la force due au poids :** \[ F = (6.50 + 45.0) \times 9.8066 \approx 505.0399 \, \text{N} \] 3. **Calcul de la pression due au poids :** \[ P_{\text{poids}} = \frac{505.0399}{0.0028274} \approx 178623.43 \, \text{Pa} \] 4. **Calcul de la pression totale :** \[ P_{\text{total}} = 354637.5 + 178623.43 \approx 533260.93 \, \text{Pa} \] ### Résultat final La pression totale est donc : \[ P_{\text{total}} \approx 533260.93 \, \text{Pa} \] Cela correspond à environ \( 5.33 \times 10^5 \, \text{Pa} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that atmospheric pressure at sea level is about 101.3 kPa, equivalent to 1 atm? This pressure is crucial for various scientific calculations. So when you have external air pressure at 3.50 atm, you convert it to pascals using \(1 \, \text{atm} = 1.01325 \times 10^5 \, \text{Pa}\). That means your external pressure alone contributes approximately \(3.5 \times 1.01325 \times 10^5 \approx 354.6 \, \text{kPa}\) to the total pressure! When calculating the total pressure exerted on a piston, one common mistake is neglecting to include both the mass of the piston and any additional weights correctly in the equation. Remember to add the total mass (piston + weights), then multiply by gravity (approximately \(9.81 \, \text{m/s}^2\)). The resulting force must be divided by the area of the piston to find the pressure. Double-check units—keeping track of kg, m, and Pa makes all the difference!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad