Question
upstudy study bank question image url

\( \frac { x } { \frac { x } { y } + \sqrt { \frac { x ^ { 2 } } { y ^ { 2 } } + 1 } } = 0 \)

Ask by Bradley Best. in Mexico
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La solución es \( x = 0 \).

Solution

Para resolver la ecuación \[ \frac { x } { \frac { x } { y } + \sqrt { \frac { x ^ { 2 } } { y ^ { 2 } } + 1 } } = 0, \] primero observamos que una fracción es igual a cero si y solo si el numerador es cero (siempre que el denominador no sea cero). En este caso, el numerador es \( x \). 1. **Condición del numerador:** \[ x = 0. \] 2. **Condición del denominador:** Ahora, debemos asegurarnos de que el denominador no sea cero cuando \( x = 0 \). El denominador es: \[ \frac { x } { y } + \sqrt { \frac { x ^ { 2 } } { y ^ { 2 } } + 1 }. \] Sustituyendo \( x = 0 \): \[ \frac { 0 } { y } + \sqrt { \frac { 0 ^ { 2 } } { y ^ { 2 } } + 1 } = 0 + \sqrt { 0 + 1 } = \sqrt{1} = 1. \] El denominador es igual a 1, que no es cero. Por lo tanto, la única solución a la ecuación es: \[ \boxed{0}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To solve the equation \( \frac { x } { \frac { x } { y } + \sqrt { \frac { x^2 } { y^2 } + 1 } } = 0 \), we start by recognizing that for a fraction to equal zero, its numerator must be zero (provided the denominator is not). The numerator here is \( x \). Thus, setting \( x = 0 \) gives us the solution. Now let's check the denominator: 1. If \( x = 0 \), the denominator becomes \( \frac{0}{y} + \sqrt{0 + 1} = 0 + 1 = 1 \), which isn’t zero, confirming that \( x = 0 \) is indeed a valid solution with the function being undefined at that point only. So, the only solution to the equation is \( x = 0 \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy