\( \frac { x } { \frac { x } { y } + \sqrt { \frac { x ^ { 2 } } { y ^ { 2 } } + 1 } } = 0 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the equation \( \frac { x } { \frac { x } { y } + \sqrt { \frac { x^2 } { y^2 } + 1 } } = 0 \), we start by recognizing that for a fraction to equal zero, its numerator must be zero (provided the denominator is not). The numerator here is \( x \). Thus, setting \( x = 0 \) gives us the solution. Now let's check the denominator: 1. If \( x = 0 \), the denominator becomes \( \frac{0}{y} + \sqrt{0 + 1} = 0 + 1 = 1 \), which isn’t zero, confirming that \( x = 0 \) is indeed a valid solution with the function being undefined at that point only. So, the only solution to the equation is \( x = 0 \).
