Question
upstudy study bank question image url

\( \left. \begin{array} { c } { D x + D ^ { 2 } y = e ^ { 3 t } } \\ { ( D + 1 ) x + ( D - 1 ) y = 4 e ^ { 3 t } } \end{array} \right. \)

Ask by Wade Thornton. in Mexico
Feb 06,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Las soluciones generales para \( x(t) \) y \( y(t) \) son: \[ \begin{cases} y(t) = C_1 + C_2 \cos(t) + C_3 \sin(t) - \dfrac{4}{15} e^{3t} \\ x(t) = C_1 + C_2 \sin(t) - C_3 \cos(t) + \dfrac{17}{15} e^{3t} \end{cases} \] donde \( C_1, C_2, C_3 \) son constantes de integración.

Solution

Para resolver el sistema de ecuaciones diferenciales: \[ \begin{cases} D x + D^{2} y = e^{3 t} \\ (D + 1) x + (D - 1) y = 4 e^{3 t} \end{cases} \] donde \( D \) representa la derivada respecto al tiempo \( t \), seguimos los siguientes pasos: ### 1. Expresión de las Ecuaciones Primero, interpretamos las operaciones: 1. **Primera Ecuación:** \[ \frac{dx}{dt} + \frac{d^{2}y}{dt^{2}} = e^{3t} \] 2. **Segunda Ecuación:** \[ \left(\frac{d}{dt} + 1\right) x + \left(\frac{d}{dt} - 1\right) y = 4 e^{3t} \\ \Rightarrow \frac{dx}{dt} + x + \frac{dy}{dt} - y = 4 e^{3t} \] ### 2. Eliminación de \( \frac{dx}{dt} \) Restamos la segunda ecuación de la primera para eliminar \( \frac{dx}{dt} \): \[ \left( \frac{dx}{dt} + \frac{d^{2}y}{dt^{2}} \right) - \left( \frac{dx}{dt} + x + \frac{dy}{dt} - y \right) = e^{3t} - 4 e^{3t} \] Simplificando: \[ \frac{d^{2}y}{dt^{2}} - \frac{dy}{dt} + y - x = -3 e^{3t} \quad \text{(Ecuación 3)} \] ### 3. Expresión de \( x \) en Términos de \( y \) De la segunda ecuación: \[ \frac{dx}{dt} = 4 e^{3t} - x - \frac{dy}{dt} + y \] Y de la primera ecuación: \[ \frac{dx}{dt} = e^{3t} - \frac{d^{2}y}{dt^{2}} \] Igualando ambas expresiones para \( \frac{dx}{dt} \): \[ e^{3t} - \frac{d^{2}y}{dt^{2}} = 4 e^{3t} - x - \frac{dy}{dt} + y \] Despejando \( x \): \[ x = \frac{d^{2}y}{dt^{2}} + 3 e^{3t} - \frac{dy}{dt} + y \quad \text{(Ecuación 4)} \] ### 4. Sustitución para Obtener una Ecuación de Orden Superior Sustituyendo \( x \) de la Ecuación 4 en la Ecuación 1: \[ \frac{d^{3}y}{dt^{3}} + \frac{dy}{dt} = -8 e^{3t} \] ### 5. Resolución de la Ecuación Diferencial de Tercer Orden **Ecuación Homogénea:** La ecuación característica es \( r^3 + r = 0 \), cuyas raíces son \( r = 0, \, r = i, \, r = -i \). Por lo tanto, la solución homogénea es: \[ y_h = C_1 + C_2 \cos(t) + C_3 \sin(t) \] **Solución Particular:** Buscamos una solución particular de la forma \( y_p = A e^{3t} \). Derivando y sustituyendo en la ecuación: \[ 27 A e^{3t} + 3 A e^{3t} = -8 e^{3t} \Rightarrow A = -\frac{4}{15} \] Por lo tanto, la solución particular es: \[ y_p = -\frac{4}{15} e^{3t} \] **Solución General de \( y(t) \):** \[ y(t) = C_1 + C_2 \cos(t) + C_3 \sin(t) - \frac{4}{15} e^{3t} \] ### 6. Determinación de \( x(t) \) Usando la Ecuación 4: \[ x(t) = \frac{d^{2}y}{dt^{2}} + 3 e^{3t} - \frac{dy}{dt} + y \] Calculando las derivadas: \[ \frac{dy}{dt} = -C_2 \sin(t) + C_3 \cos(t) - \frac{4}{5} e^{3t} \] \[ \frac{d^{2}y}{dt^{2}} = -C_2 \cos(t) - C_3 \sin(t) - \frac{12}{5} e^{3t} \] Sustituyendo en \( x(t) \): \[ x(t) = -C_2 \cos(t) - C_3 \sin(t) - \frac{12}{5} e^{3t} + 3 e^{3t} + C_2 \sin(t) - C_3 \cos(t) + \frac{4}{5} e^{3t} + C_1 + C_2 \cos(t) + C_3 \sin(t) - \frac{4}{15} e^{3t} \] Simplificando términos: \[ x(t) = C_1 + C_2 \sin(t) - C_3 \cos(t) + \frac{17}{15} e^{3t} \] ### 7. Solución Final Las soluciones generales para \( x(t) \) y \( y(t) \) son: \[ \begin{cases} y(t) = C_1 + C_2 \cos(t) + C_3 \sin(t) - \dfrac{4}{15} e^{3t} \\ x(t) = C_1 + C_2 \sin(t) - C_3 \cos(t) + \dfrac{17}{15} e^{3t} \end{cases} \] donde \( C_1, C_2, C_3 \) son constantes de integración determinadas por las condiciones iniciales del problema.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To solve the system of differential equations given, we can use the operator \( D \), which represents differentiation with respect to \( t \). 1. Starting with the first equation, we rewrite it: \[ Dx + D^2y = e^{3t} \] 2. From the second equation, we express \( y \) in terms of \( x \): \[ (D + 1)x + (D - 1)y = 4e^{3t} \] Rearranging it gives: \[ (D - 1)y = 4e^{3t} - (D + 1)x \] Thus, we can solve for \( y \) as: \[ y = \frac{4e^{3t} - (D + 1)x}{D - 1} \] 3. Next, substitute this expression for \( y \) back into the first equation and solve the derivative terms. This will be a long process involving simplifying and rearranging terms. 4. After finding expressions for \( x \) and \( y \), you may deduce particular solutions based on the functions involved, along with any necessary homogeneous solutions. This approach allows you to handle these equations systematically by utilizing the properties of linear differential equations and operators. For the final solutions, you can frequently apply initial or boundary conditions to finalize the constants of integration once the general solutions are established.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy