Question
upstudy study bank question image url

equations: q) \( x^{3}-3 x^{2}+2 x=0 \) r) \( 3 x^{3}-2 x^{2}-8 x=0 \) s) \( 6 x^{2}+7 x=-2 \) t) \( 9 x^{2}+24 x+15=0 \) u) \( 84 x^{3}+50 x^{2}+6 x=0 \) v) \( 2(x+1)^{2}=(2 x+2)(2 x+3) \)

Ask by Lambert Marsh. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the solutions to the equations: q) x = 0, 1, 2 r) x = 0, 2, –4/3 s) x = –1/2, –2/3 t) x = –1, –5/3 u) x = 0, –1/6, –3/7 v) x = –1, –2

Solution

We will solve each equation one by one. ──────────────────────────── q) Solve x³ – 3x² + 2x = 0. Step 1. Factor out x:   x (x² – 3x + 2) = 0 Step 2. Factor the quadratic:   x² – 3x + 2 = (x – 1)(x – 2) Thus, the equation factors as:   x (x – 1)(x – 2) = 0 Step 3. Set each factor equal to zero:   x = 0  or x – 1 = 0  or x – 2 = 0 Therefore, the solutions are:   x = 0, 1, 2 ──────────────────────────── r) Solve 3x³ – 2x² – 8x = 0. Step 1. Factor out x:   x (3x² – 2x – 8) = 0 So, one solution is:   x = 0 Step 2. Solve the quadratic 3x² – 2x – 8 = 0. Use the quadratic formula:   x = [–b ± √(b² – 4ac)] / (2a) Here, a = 3, b = –2, c = –8. Compute the discriminant:   Δ = (–2)² – 4·3·(–8) = 4 + 96 = 100 Then:   x = [2 ± 10] / (6) This gives:   x = (2 + 10) / 6 = 12/6 = 2   x = (2 – 10) / 6 = –8/6 = –4/3 Thus, the solutions are:   x = 0, 2, –4/3 ──────────────────────────── s) Solve 6x² + 7x = –2. Step 1. Bring all terms to one side:   6x² + 7x + 2 = 0 Step 2. Factor the quadratic. Look for two numbers that multiply to 6×2 = 12 and add to 7. They are 3 and 4. Write:   6x² + 3x + 4x + 2 = 0 Group terms:   (6x² + 3x) + (4x + 2) = 0 Factor:   3x(2x + 1) + 2(2x + 1) = 0 Factor common term (2x + 1):   (2x + 1)(3x + 2) = 0 Set each factor equal to zero:   2x + 1 = 0  ⟹  x = –1/2   3x + 2 = 0  ⟹  x = –2/3 Thus, the solutions are:   x = –1/2, –2/3 ──────────────────────────── t) Solve 9x² + 24x + 15 = 0. Step 1. Use the quadratic formula with a = 9, b = 24, c = 15. Compute the discriminant:   Δ = 24² – 4·9·15 = 576 – 540 = 36 Take the square root:   √36 = 6 Then:   x = [–24 ± 6] / (2·9) = [–24 ± 6] / 18 Thus,   x = (–24 + 6)/18 = –18/18 = –1   x = (–24 – 6)/18 = –30/18 = –5/3 So, the solutions are:   x = –1, –5/3 ──────────────────────────── u) Solve 84x³ + 50x² + 6x = 0. Step 1. Factor out the common factor 2x:   2x (42x² + 25x + 3) = 0 So one solution is:   x = 0 Step 2. Solve the quadratic 42x² + 25x + 3 = 0. Use the quadratic formula where a = 42, b = 25, c = 3. First, find the discriminant:   Δ = 25² – 4·42·3 = 625 – 504 = 121 √121 = 11 Now,   x = [–25 ± 11] / (2·42) = [–25 ± 11] / 84 This gives:   x = (–25 + 11) / 84 = –14/84 = –1/6   x = (–25 – 11) / 84 = –36/84 = –3/7 Thus, the solutions are:   x = 0, –1/6, –3/7 ──────────────────────────── v) Solve 2(x + 1)² = (2x + 2)(2x + 3). Step 1. Notice that 2x + 2 = 2(x + 1). Then the right-hand side becomes:   (2(x + 1))(2x + 3) The equation now reads:   2(x + 1)² = 2(x + 1)(2x + 3) Step 2. Divide both sides by 2 (provided 2 ≠ 0):   (x + 1)² = (x + 1)(2x + 3) Step 3. Subtract the right side from both sides:   (x + 1)² – (x + 1)(2x + 3) = 0 Factor out (x + 1):   (x + 1)[(x + 1) – (2x + 3)] = 0 Simplify the bracket:   (x + 1) – (2x + 3) = x + 1 – 2x – 3 = –x – 2 Thus, we have:   (x + 1)(–x – 2) = 0 Set each factor equal to zero: Factor 1: x + 1 = 0 ⟹ x = –1 Factor 2: –x – 2 = 0 ⟹ –x = 2 ⟹ x = –2 So, the solutions are:   x = –1, –2 ──────────────────────────── Summary of Answers: q) x = 0, 1, 2 r) x = 0, 2, –4/3 s) x = –1/2, –2/3 t) x = –1, –5/3 u) x = 0, –1/6, –3/7 v) x = –1, –2

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To solve \( x^{3}-3 x^{2}+2 x=0 \), start by factoring out the common term \( x \): \( x(x^{2}-3x+2)=0 \). This leads to solutions \( x=0 \) or solving \( x^{2}-3x+2=0 \), which factors to \( (x-1)(x-2)=0 \). Thus, the roots are \( x=0, 1, 2 \). Similarly, for the equation \( 3 x^{3}-2 x^{2}-8 x=0 \), factor as \( x(3x^{2}-2x-8)=0 \), leading to \( x=0 \) and using the quadratic formula or factoring to find the other roots. Next, in \( 6 x^{2}+7 x=-2 \), rearrange to get \( 6 x^{2}+7 x + 2 = 0 \) and apply the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) for roots. Meanwhile, \( 9 x^{2}+24 x+15=0 \) follows the same approach—be sure to set it equal to zero first, then calculate the roots using the formula or completing the square. Finally, tackle \( 84 x^{3}+50 x^{2}+6 x=0 \) by factoring out \( x \) first to simplify finding the solutions, and remember for \( 2(x+1)^{2}=(2 x+2)(2 x+3) \) to expand both sides and solve for \( x \) accordingly. Happy solving!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy