Answer
The simplified expression is \( \frac{9a - 27}{2a + 6} \).
Solution
Factor the expression by following steps:
- step0: Factor:
\(2a+6\)
- step1: Factor the expression:
\(2\left(a+3\right)\)
Factor the expression \( a^{2}-6 a+9 \).
Factor the expression by following steps:
- step0: Factor:
\(a^{2}-6a+9\)
- step1: Factor the expression:
\(\left(a-3\right)^{2}\)
Factor the expression \( a b-3 b+2 a-6 \).
Factor the expression by following steps:
- step0: Factor:
\(ab-3b+2a-6\)
- step1: Calculate:
\(ab+2a-3b-6\)
- step2: Rewrite the expression:
\(ab+a\times 2-3b-3\times 2\)
- step3: Factor the expression:
\(a\left(b+2\right)-3\left(b+2\right)\)
- step4: Factor the expression:
\(\left(a-3\right)\left(b+2\right)\)
Factor the expression \( 9 b+18 \).
Factor the expression by following steps:
- step0: Factor:
\(9b+18\)
- step1: Factor the expression:
\(9\left(b+2\right)\)
Calculate or simplify the expression \( \frac{9(b+2)}{2(a+3)} \div \frac{(a-3)(b+2)}{(a-3)^{2}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{9\left(b+2\right)}{2\left(a+3\right)}\div \frac{\left(a-3\right)\left(b+2\right)}{\left(a-3\right)^{2}}\)
- step1: Multiply by \(a^{-n}:\)
\(\frac{9\left(b+2\right)}{2\left(a+3\right)}\div \left(\left(a-3\right)\left(b+2\right)\left(a-3\right)^{-2}\right)\)
- step2: Multiply:
\(\frac{9\left(b+2\right)}{2\left(a+3\right)}\div \left(\left(a-3\right)^{-1}\left(b+2\right)\right)\)
- step3: Rewrite the expression:
\(\frac{9\left(b+2\right)}{2\left(a+3\right)}\div \frac{b+2}{a-3}\)
- step4: Multiply by the reciprocal:
\(\frac{9\left(b+2\right)}{2\left(a+3\right)}\times \frac{a-3}{b+2}\)
- step5: Reduce the fraction:
\(\frac{9}{2\left(a+3\right)}\times \left(a-3\right)\)
- step6: Multiply the terms:
\(\frac{9\left(a-3\right)}{2\left(a+3\right)}\)
- step7: Simplify:
\(\frac{9a-27}{2\left(a+3\right)}\)
- step8: Simplify:
\(\frac{9a-27}{2a+6}\)
To simplify the expression
\[
\frac{9 b+18}{2 a+6} \div \frac{a b-3 b+2 a-6}{a^{2}-6 a+9},
\]
we will follow these steps:
1. **Factor the expressions**:
- The numerator \(9b + 18\) can be factored as \(9(b + 2)\).
- The denominator \(2a + 6\) can be factored as \(2(a + 3)\).
- The numerator of the second fraction \(ab - 3b + 2a - 6\) can be factored as \((a - 3)(b + 2)\).
- The denominator \(a^2 - 6a + 9\) can be factored as \((a - 3)^2\).
2. **Rewrite the division as multiplication**:
\[
\frac{9(b + 2)}{2(a + 3)} \div \frac{(a - 3)(b + 2)}{(a - 3)^2} = \frac{9(b + 2)}{2(a + 3)} \times \frac{(a - 3)^2}{(a - 3)(b + 2)}.
\]
3. **Cancel common factors**:
- The \(b + 2\) in the numerator and denominator cancels out.
- One \(a - 3\) from the numerator cancels with one \(a - 3\) from the denominator.
4. **Resulting expression**:
After canceling, we have:
\[
\frac{9(a - 3)}{2(a + 3)}.
\]
5. **Final simplification**:
The final simplified expression is:
\[
\frac{9a - 27}{2a + 6}.
\]
Thus, the simplified result is
\[
\frac{9a - 27}{2a + 6}.
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution