Question
upstudy study bank question image url

Solve for \( x \) (1) \( \frac{3}{x-1}>0 \) 2) \( \frac{-2}{x+3} \geq 0 \)

Ask by Hill Elliott. in South Africa
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( x > 1 \) or \( x < -3 \).

Solution

Solve the equation \( \frac{3}{x-1}>0 \). Solve the inequality by following steps: - step0: Solve the inequality by testing the values in the interval: \(\frac{3}{x-1}>0\) - step1: Find the domain: \(\frac{3}{x-1}>0,x\neq 1\) - step2: Set the denominator of \(\frac{3}{x-1}\) equal to 0\(:\) \(x=1\) - step3: Determine the test intervals: \(\begin{align}&x<1\\&x>1\end{align}\) - step4: Choose a value: \(\begin{align}&x_{1}=0\\&x_{2}=2\end{align}\) - step5: Test the chosen value: \(\begin{align}&x<1\textrm{ }\textrm{is not a solution}\\&x>1\textrm{ }\textrm{is the solution}\end{align}\) - step6: The final solution is \(x>1:\) \(x>1\) - step7: Check if the solution is in the defined range: \(x>1,x\neq 1\) - step8: Find the intersection: \(x>1\) Solve the equation \( \frac{-2}{x+3} \geq 0 \). Solve the inequality by following steps: - step0: Solve the inequality by testing the values in the interval: \(\frac{-2}{x+3}\geq 0\) - step1: Find the domain: \(\frac{-2}{x+3}\geq 0,x\neq -3\) - step2: Rewrite the fraction: \(-\frac{2}{x+3}\geq 0\) - step3: Change the sign: \(\frac{2}{x+3}\leq 0\) - step4: Set the denominator of \(\frac{2}{x+3}\) equal to 0\(:\) \(x=-3\) - step5: Determine the test intervals: \(\begin{align}&x<-3\\&x>-3\end{align}\) - step6: Choose a value: \(\begin{align}&x_{1}=-4\\&x_{2}=-2\end{align}\) - step7: Test the chosen value: \(\begin{align}&x<-3\textrm{ }\textrm{is the solution}\\&x>-3\textrm{ }\textrm{is not a solution}\end{align}\) - step8: Include the critical value: \(\begin{align}&x<-3\textrm{ }\textrm{is the solution}\end{align}\) - step9: The final solution is \(x<-3:\) \(x<-3\) - step10: Check if the solution is in the defined range: \(x<-3,x\neq -3\) - step11: Find the intersection: \(x<-3\) The solutions to the given inequalities are: 1) \( x > 1 \) 2) \( x < -3 \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the inequality \( \frac{3}{x-1}>0 \), we need to find where the fraction is positive. Since the numerator \( 3 \) is always positive, we can focus on the denominator. The fraction is positive when \( x - 1 > 0 \), so \( x > 1 \). For the second inequality \( \frac{-2}{x+3} \geq 0 \), the numerator \( -2 \) is negative, so the fraction will be non-negative when the denominator \( x + 3 \) is negative, which means \( x + 3 < 0 \) or \( x < -3 \). Combining both results: 1. From the first inequality, \( x > 1 \). 2. From the second inequality, \( x < -3 \). Since there are no \( x \) values that can satisfy both conditions simultaneously, the solution set is empty. So, the final answer is that there are no solutions for \( x \). For a little historical touch, inequalities have been a staple of mathematics since ancient times, with the Greeks first exploring the idea of comparing quantities. Fast forward to today, inequalities help us make decisions in countless fields, from economics to engineering! If you’re wrestling with inequalities, a common mistake is forgetting to flip the inequality sign when multiplying or dividing by a negative number! Always double-check that detail to avoid sneaky errors.

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy