Question
upstudy study bank question image url

Factor out the GCF of the three t \( 6 x^{2}(x-1)-120 x \) \( 6 x(x+4)(x-5) \) \( 6 x\left(x^{2}-x-20\right) \) \( 6 x(x-4)(x+5) \)

Ask by Allan Grant. in the United States
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El factor común más grande (GCF) de las expresiones es \( 6x \). Las factorizaciones son: 1. \( 6x(x-5)(x+4) \) para \( 6x^{2}(x-1)-120x \) 2. \( 6x(x-5)(x+4) \) para \( 6x(x^{2}-x-20) \) Las otras opciones no se pueden simplificar más con un GCF común.

Solution

Factor the expression by following steps: - step0: Factor: \(6x\left(x^{2}-x-20\right)\) - step1: Factor the expression: \(6x\left(x-5\right)\left(x+4\right)\) Factor the expression \( 6 x^{2}(x-1)-120 x \). Factor the expression by following steps: - step0: Factor: \(6x^{2}\left(x-1\right)-120x\) - step1: Rewrite the expression: \(6x\times x\left(x-1\right)-6x\times 20\) - step2: Factor the expression: \(6x\left(x\left(x-1\right)-20\right)\) - step3: Factor the expression: \(6x\left(x-5\right)\left(x+4\right)\) Vamos a factorizar la expresión \( 6 x^{2}(x-1)-120 x \) y \( 6 x\left(x^{2}-x-20\right) \) para encontrar el factor común más grande (GCF). 1. **Para la expresión \( 6 x^{2}(x-1)-120 x \)**: - Primero, sacamos el GCF de los términos. El GCF aquí es \( 6x \). - Al factorizar, obtenemos: \[ 6x(x-5)(x+4) \] 2. **Para la expresión \( 6 x\left(x^{2}-x-20\right) \)**: - Aquí también podemos factorizar el polinomio dentro del paréntesis. - El polinomio \( x^{2}-x-20 \) se puede factorizar como \( (x-5)(x+4) \). - Entonces, al factorizar, obtenemos: \[ 6x(x-5)(x+4) \] 3. **Para las otras expresiones \( 6 x(x+4)(x-5) \) y \( 6 x(x-4)(x+5) \)**: - No se encontró un resultado para estas expresiones, lo que sugiere que no se pueden simplificar más o que no tienen un GCF común que se pueda extraer. En resumen, el GCF de las expresiones dadas es \( 6x \) y las factorizaciones son: - \( 6x(x-5)(x+4) \) para \( 6 x^{2}(x-1)-120 x \) - \( 6x(x-5)(x+4) \) para \( 6 x\left(x^{2}-x-20\right) \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To factor out the GCF from \( 6 x^{2}(x-1)-120 x \), first, we observe that the GCF to factor out from both terms is \( 6x \). This gives us: \( 6x[(x^{2}(x-1)/6x) - (120x/6x)] \) Which simplifies down to: \( 6x[(x^{2}(x-1)/6) - 20] \) Starting again, we directly factor \( 6x \) outside the expression, leading to: \( 6x(x^{2} - 20) - 6x(x) \) From here, you can complete the factorization for the quadratic part or further simplify based on roots! For \( 6x\left(x^{2}-x-20\right) \), you can find the factorization by looking for two numbers that multiply to \(-20\) and add to \(-1\), leading us to \( (x-5)(x+4) \). Thus, this whole expression becomes: \( 6x(x-5)(x+4) \) So, your expression neatly gathers and shines when you factor out \( 6x \) and break apart the quadratic! Fun times with factoring!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy