Question
\( (y-1)\log _{10}(4)=y\log _{10}(16)findy \)
Ask by Murphy Brooks. in Nigeria
Feb 17,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
\( y = -1 \)
Solution
Solve the equation \( (y-1)\log _{10}(4)=y\log _{10}(16) \).
Solve the equation by following steps:
- step0: Solve for \(y\):
\(\left(y-1\right)\times \log_{10}{\left(4\right)}=y\log_{10}{\left(16\right)}\)
- step1: Multiply the terms:
\(\log_{10}{\left(4\right)}\times \left(y-1\right)=\log_{10}{\left(16\right)}\times y\)
- step2: Expand the expression:
\(2\log_{10}{\left(2\right)}\times y-2\log_{10}{\left(2\right)}=\log_{10}{\left(16\right)}\times y\)
- step3: Move the variable to the left side:
\(2\log_{10}{\left(2\right)}\times y-2\log_{10}{\left(2\right)}-\log_{10}{\left(16\right)}\times y=0\)
- step4: Subtract the terms:
\(-2\log_{10}{\left(2\right)}\times y-2\log_{10}{\left(2\right)}=0\)
- step5: Move the constant to the right side:
\(-2\log_{10}{\left(2\right)}\times y=0+2\log_{10}{\left(2\right)}\)
- step6: Remove 0:
\(-2\log_{10}{\left(2\right)}\times y=2\log_{10}{\left(2\right)}\)
- step7: Change the signs:
\(2\log_{10}{\left(2\right)}\times y=-2\log_{10}{\left(2\right)}\)
- step8: Divide both sides:
\(\frac{2\log_{10}{\left(2\right)}\times y}{2\log_{10}{\left(2\right)}}=\frac{-2\log_{10}{\left(2\right)}}{2\log_{10}{\left(2\right)}}\)
- step9: Divide the numbers:
\(y=-1\)
The solution to the equation \( (y-1)\log _{10}(4)=y\log _{10}(16) \) is \( y=-1 \).
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Bonus Knowledge
To solve the equation \( (y-1)\log _{10}(4)=y\log _{10}(16) \), we start by leveraging the properties of logarithms. First, recognize that \( \log_{10}(16) \) can be rewritten: \[ \log_{10}(16) = \log_{10}(4^2) = 2\log_{10}(4) \] Substituting this into the original equation gives us: \[ (y-1)\log_{10}(4) = y \cdot 2\log_{10}(4) \] Assuming \( \log_{10}(4) \neq 0 \), we can divide both sides by \( \log_{10}(4) \): \[ y - 1 = 2y \] Rearranging the terms, we have: \[ y - 2y = 1 \implies -y = 1 \implies y = -1 \] Thus, the solution is \( y = -1 \).