\( (y-1)\log _{10}(4)=y\log _{10}(16)findy \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To solve the equation \( (y-1)\log _{10}(4)=y\log _{10}(16) \), we start by leveraging the properties of logarithms. First, recognize that \( \log_{10}(16) \) can be rewritten: \[ \log_{10}(16) = \log_{10}(4^2) = 2\log_{10}(4) \] Substituting this into the original equation gives us: \[ (y-1)\log_{10}(4) = y \cdot 2\log_{10}(4) \] Assuming \( \log_{10}(4) \neq 0 \), we can divide both sides by \( \log_{10}(4) \): \[ y - 1 = 2y \] Rearranging the terms, we have: \[ y - 2y = 1 \implies -y = 1 \implies y = -1 \] Thus, the solution is \( y = -1 \).
