Answer
The simplified expression is \( \frac{4d - 23}{d - 4} \).
Solution
Simplify the expression by following steps:
- step0: Solution:
\(5-\frac{\left(d^{2}-9\right)}{\left(d^{2}-7d+12\right)}\)
- step1: Remove the parentheses:
\(5-\frac{d^{2}-9}{d^{2}-7d+12}\)
- step2: Divide the terms:
\(5-\frac{d+3}{d-4}\)
- step3: Reduce fractions to a common denominator:
\(\frac{5\left(d-4\right)}{d-4}-\frac{d+3}{d-4}\)
- step4: Transform the expression:
\(\frac{5\left(d-4\right)-\left(d+3\right)}{d-4}\)
- step5: Multiply the terms:
\(\frac{5d-20-\left(d+3\right)}{d-4}\)
- step6: Subtract the terms:
\(\frac{4d-23}{d-4}\)
To simplify the expression \( 5 - \frac{d^{2}-9}{d^{2}-7d+12} \), we can follow these steps:
1. **Identify the components**:
- The expression consists of a constant \( 5 \) and a fraction \( \frac{d^{2}-9}{d^{2}-7d+12} \).
2. **Factor the denominator**:
- The denominator \( d^{2}-7d+12 \) can be factored. It factors to \( (d-3)(d-4) \).
3. **Rewrite the expression**:
- The expression can be rewritten as:
\[
5 - \frac{(d-3)(d+3)}{(d-3)(d-4)}
\]
4. **Simplify the fraction**:
- The \( (d-3) \) terms cancel out (assuming \( d \neq 3 \)):
\[
5 - \frac{d+3}{d-4}
\]
5. **Combine the terms**:
- To combine \( 5 \) and \( -\frac{d+3}{d-4} \), we express \( 5 \) with a common denominator:
\[
5 = \frac{5(d-4)}{d-4} = \frac{5d - 20}{d-4}
\]
- Now, we can combine:
\[
\frac{5d - 20}{d-4} - \frac{d+3}{d-4} = \frac{(5d - 20) - (d + 3)}{d-4}
\]
6. **Simplify the numerator**:
- Combine the terms in the numerator:
\[
5d - 20 - d - 3 = 4d - 23
\]
7. **Final expression**:
- Thus, the simplified expression is:
\[
\frac{4d - 23}{d - 4}
\]
So, the final result is:
\[
\frac{4d - 23}{d - 4}
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution