Question
upstudy study bank question image url

Integre la siguiente función: \[ f(x)=3 x^{4}-24 x^{3}-3 x^{2}+12 x+8 \]

Ask by Cox Henry. in Argentina
Nov 23,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

La integral de \( f(x)=3x^{4}-24x^{3}-3x^{2}+12x+8 \) es \( \frac{3x^{5}}{5}-6x^{4}-x^{3}+6x^{2}+8x + C \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Bonus Knowledge

Para integrar la función \( f(x) = 3x^4 - 24x^3 - 3x^2 + 12x + 8 \), aplicamos la regla de integración término a término. Recordemos que la integral de \( x^n \) es \( \frac{x^{n+1}}{n+1} + C \), donde \( C \) es la constante de integración. Entonces, procedemos de la siguiente manera: \[ \int f(x) \, dx = \int (3x^4 - 24x^3 - 3x^2 + 12x + 8) \, dx \] Calculando cada término: 1. \( \int 3x^4 \, dx = \frac{3}{5} x^5 \) 2. \( \int -24x^3 \, dx = -6x^4 \) 3. \( \int -3x^2 \, dx = -x^3 \) 4. \( \int 12x \, dx = 6x^2 \) 5. \( \int 8 \, dx = 8x \) Luego, sumamos todo: \[ \int f(x) \, dx = \frac{3}{5} x^5 - 6x^4 - x^3 + 6x^2 + 8x + C \] Donde \( C \) es la constante de integración. Así que la integral de \( f(x) \) es: \[ \frac{3}{5} x^5 - 6x^4 - x^3 + 6x^2 + 8x + C \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy