Mckenzie Sherman
10/05/2023 · Elementary School
Partie B Pour la suite de l'exercice, on admet que la fonction \( f \) est définie sur par \( \left[0 ;+\infty\left[: f(x)=(x+1) e^{-\frac{1}{2} x}\right.\right. \). 1) a] Justifier que, pour tout réel \( x \) positif, \( f(x)=2\left(\frac{\frac{1}{2} x}{e^{\frac{1}{2} x}}\right)+e^{-\frac{1}{2} x} \).
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
Pour tout réel \( x \) positif, \( f(x) = 2\left(\frac{\frac{1}{2} x}{e^{\frac{1}{2} x}}\right) + e^{-\frac{1}{2} x} \) est justifié par la manipulation de l'expression de \( f(x) \) et la réécriture sous cette forme.
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit