girl-logo

Ask Questions

Pre Algebra Questions & Answers

Q:
Find the slope for the points (0, 0) and (4, 8).
Q:
Suppose that we have the matrix \( A=\left[\begin{array}{rrr}1 & 1 & -1 \\ 3 & 0 & -1 \\ -1 & -1 & 2\end{array}\right] \) such that \( |A|=-3 \). Evaluate \( \left|3 C^{-1}\right| \)
Q:
Simplity the complex numb \( i^{387} \)
Q:
3. Indica si existen o no los siguientes radicales. En caso afirmativo, calcular su raíz. \( \begin{array}{llll}\text { a) }(\sqrt[4]{-16})^{4} & \text { b) } \sqrt[4]{(-16)^{4}} & \text { c) } \sqrt[3]{-27^{3}} & \text { d) }(\sqrt[3]{-27})^{3}\end{array} \)
Q:
4. Extrae factores de los radicales y simplifica al máximo. \( \begin{array}{ll}\text { a) } 8 \sqrt{2}-\sqrt{32} & \text { c) } 2 \sqrt{48}-3 \sqrt{675}+\sqrt{588} \\ \text { b) } \sqrt{27}-\sqrt{12}+\sqrt{75} & \text { d) } \sqrt[3]{375}+\sqrt[3]{81}\end{array} \)
Q:
2. Aplica las propiedades de los radicales: \( \begin{array}{lll}\text { a) } \sqrt[3]{8} \cdot \sqrt{9} & \text { c) }(\sqrt[5]{9})^{15} & \text { e) } \sqrt[4]{16 \cdot 9^{2}} \\ \text { b) } \sqrt[6]{2^{18} \cdot 7^{12}} & \text { d) } \sqrt[4]{16} \cdot \sqrt{9} & \text { f) } \sqrt{\frac{\sqrt[3]{64}}{\sqrt{625}}}\end{array} \)
Q:
find the vertex of \( f(x)=1+\left.x\right|^{2} \)
Q:
Question simplify: \( \sqrt[6]{x^{18}} \)
Q:
Question Estimate \( \sqrt[3]{4} \) between two consecutive whole numbers.
Q:
Simplify: \( -\sqrt{4} \) (Enter \( \varnothing \) if your answer is not a real number.)

Test your knowledge on Pre Algebra!

Select the correct answer and check your answer

2 3 4 5 6 7 8 9 10 11
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions