Stephens Frazier
12/30/2023 · Primary School
\( z=f(x, y) \) con derivadas parciales de segundo orden continuas: Si \( x=r^{2}+s^{2}, \quad y=2 r s \quad \) determine \( \frac{\partial^{2} z}{\partial r^{2}}, \quad \frac{\partial^{2} z}{\partial s^{2}}, \quad \frac{\partial^{2} z}{\partial s \partial r} \)
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
Para encontrar las segundas derivadas parciales de \( z \) con respecto a \( r \) y \( s \), primero calculamos las primeras derivadas parciales de \( z \) con respecto a \( x \) y \( y \) usando la regla de la cadena. Luego, calculamos las segundas derivadas parciales. Las fórmulas resultantes son:
\[ \frac{\partial^{2} z}{\partial r^{2}} = 2f_x + 2r\frac{\partial f_x}{\partial r} + 2s\frac{\partial f_y}{\partial r} \]
\[ \frac{\partial^{2} z}{\partial s^{2}} = 2f_x + 2s\frac{\partial f_x}{\partial s} + 2r\frac{\partial f_y}{\partial s} \]
\[ \frac{\partial^{2} z}{\partial s \partial r} = 2s\frac{\partial f_x}{\partial r} + 2f_y + 2r\frac{\partial f_y}{\partial r} \]
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit