Johnston Bowers
06/19/2023 · Junior High School
\( \int \frac { x ^ { 3 } d x } { x ^ { 2 } + 4 x + 4 } = \int ( x - 4 ) d x + \int \frac { 12 x + 16 } { x ^ { 2 } + 4 x + 4 } \)
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
Podemos reescribir la integral como:
\[
\int \left( x - 4 + \frac{12x + 16}{(x + 2)^2} \right) dx.
\]
La primera integral es sencilla:
\[
\int (x - 4) \, dx = \frac{x^2}{2} - 4x + C_1.
\]
Para la segunda integral, podemos simplificar el numerador:
\[
12x + 16 = 12(x + 2) - 8.
\]
Por lo tanto, la integral se convierte en:
\[
\int \frac{12(x + 2) - 8}{(x + 2)^2} \, dx = \int \left( \frac{12}{x + 2} - \frac{8}{(x + 2)^2} \right) dx.
\]
Ahora, resolvemos ambas integrales:
1. \(\int \frac{12}{x + 2} \, dx = 12 \ln |x + 2| + C_2\).
2. \(\int -\frac{8}{(x + 2)^2} \, dx = 8 \cdot \frac{1}{x + 2} + C_3\).
Finalmente, combinamos todos los resultados:
\[
\int \frac{x^3 \, dx}{x^2 + 4x + 4} = \frac{x^2}{2} - 4x + 12 \ln |x + 2| - \frac{8}{x + 2} + C,
\]
donde \(C\) es la constante de integración que combina \(C_1\), \(C_2\) y \(C_3\).
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit