Q:
A continuously compounded savings account had an initial deposit of \( \$ 10000 \) and 10 years later has a
balance of \( \$ 13125.87 \). At what interest rate was the savings account?
Q:
04. Una persona debería pagar su deuda el 2 de
mayo no lo hace sino el 18 del mismo mes, lo
que aumenta su deuda en S/. 18. Si estaba
impuestaa \( 4 \% \) de interés anual. ¿Cuánto debía
el esa persona?
te
\( \begin{array}{ll}\text { a) } 10215 & \text { b) } 10512 \\ \text { c) } 10125 & \text { d) } 10251 \\ \text { e) N.A } & \end{array} \)
Q:
Unit 3: Exponential and Logarithmic Functions
5. If at the end of six years your savings account has a balance of \( \$ 1236.34 \), and you original depositwas
\( \$ 1000 \), then at what interest rate is your account compounded semi-annually?
Q:
03. ¿Cuántos años estuvo impuesto, a interés
compuesto al \( 5 \% \) un capital de 3200000
soles que se convirtió en 4084101 soles?
\( \begin{array}{ll}\text { a) } 2 & \text { b) } 3 \\ \text { c) } 4 & \text { d) } 5 \\ \text { e) } 6 & \end{array} \)
Q:
02. La razón aritmética de dos capitales es \( S / \).
15000 ; se impone el mayor al \( 30 \% \) y el otro al
\( 40 \% \) de interés simple, durante 18 meses.
Luego de este tiempo los montos son iguales.
Calcular el menor capital.
\( \begin{array}{ll}\text { a) } 145000 & \text { b) } 160000 \\ \text { c) } 135000 & \text { d) } 120000 \\ \text { e) } 165000 & \end{array} \)
Q:
Al 3\% annual interest eompounded menthly, how long will it take to double your money?
Q:
4.2PS-10
Investors buy a studio apartment for \( \$ 150,000 \). Of this amount, they have a down payment of \( \$ 45,000 \). Their down payment is
what percent of the purchase price? What percent of the purchase price would a \( \$ 60,000 \) down payment be?
Q:
If you deposit \( \$ 8000 \) into an account paying \( 7 \% \) annual interest compounded quarterly, how long un
there is \( \$ 12400 \) in the account?
\[ \frac{12400}{8000}=\frac{8006}{8000}\left(1+\frac{.07}{4}\right)^{(4)} \]
Q:
3: Exponential and Logarithmic Functions
hework: Solving with and without Logarithms
If you deposit \( \$ 6500 \) into an account paying \( 8 \% \) annual interest compounded monthly, how much
money will be in the account after 7 years?
Q:
If \( x \) represents the number of items produced, (a) write a cost function, (b) find a revenue function if each item sells for the price given, (c)
state the profit function, (d) determine analytically how many items must be produced before a profit is realized (assume whole numbers
of items), and (e) support the results of part (d) graphically.
The fixed cost is \( \$ 500 \), the cost to produce an item is \( \$ 20 \), and the selling price of the item is \( \$ 45 \).
(a) The cost function is \( \mathrm{C}(\mathrm{x})=\square \).
(Simplify your answer. Do not factor.)
(b) The revenue function is \( \mathrm{R}(\mathrm{x})=\square \).
(Simplify your answer. Do not factor.)
(c) The profit function is \( \mathrm{P}(\mathrm{x})=\square \).
(Simplify your answer. Do not factor.)
(d) At least \( \square \) items must be produced before a profit is shown.
(Type a whole number.)
(e) Choose the correct graph to the right.
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit