Q:
\( \left( \begin{array} { c c c } { 1 } & { 2 + 0 } \\ { - 2 } & { 0 } & { 1 } \\ { 4 } & { 5 } & { 6 } \end{array} \right) - \left( \begin{array} { l l l } { 3 } & { 1 } & { 4 } \\ { 4 } & { 0 } & { - 1 } \\ { 5 } & { 2 } & { - 2 } \end{array} \right) \)
Q:
If a line goes up from left to right, what can you say about its slope?
Q:
Aşağıdaki kutuların içine \( \sqrt{2}, \sqrt{3}, \sqrt{6}, \sqrt{8}, \sqrt{12} \) sayııarı, her
kutuya farkıı bir sayı gelecek şekilde yerleştirildiğınde A bir
tam sayı olmaktadır.
\( \square \cdot(\square+\square) \cdot(\square+\square)=A \)
Buna göre, A kaçtır?
Q:
The Fan Cost Index (FCI) represents the cost of four average-price tickets, refreshments, and souvenirs to a sporting
event. The FCIs for an independent tennis league and an independent hockey league totaled \( \$ 127.94 \). The hockey FCI
was \( \$ 8.36 \) more than that of tennis. What were the FCIs for these sports?
The FCI for tennis was \( \$ \square \) and the FCI for hockey was \( \$ \square \).
Q:
Solve the system of equations using substitution.
\( \begin{aligned} 3 x+y & =7 \\ y & =4 x\end{aligned} \)
Q:
Solve for \( x \) :
\( \begin{array}{ll}2.1 .1 & p x+q x=a \\ 2.1 .2 & 2 x^{2}-5 x+2=0 \\ 2.1 .3 & (1-1)^{3 x+1}=32\end{array} \)
Q:
76. \( y^{3 m} y^{2 m} \)
78. \( r^{2 m} s^{-3} r^{3 m} s^{3} \)
80. \( x^{m+1} x^{m} \)
Q:
52. \( \left(y^{-3} z^{5}\right)^{-6} \)
54. \( \left(-3 u^{-2} v^{3}\right)^{-3} \)
56. \( \left(\frac{a^{4}}{a^{-3}}\right)^{3} \)
58. \( \left(\frac{b^{-2}}{b^{3}}\right)^{-3} \)
60. \( \left(\frac{-3 r^{4} r^{-3}}{r^{-3} r^{7}}\right)^{3} \)
62. \( \left(\frac{6 x y^{3}}{3 x^{-1} y}\right)^{3} \)
64. \( \left(\frac{9 u^{2} v^{3}}{18 u^{-3} v}\right)^{4} \)
66. \( \left(\frac{-27 u^{-5} v^{-3} w}{18 u^{3} v^{-2}}\right)^{4} \)
72. \( \frac{\left(a b^{-2} c\right)^{2}}{\left(a x^{-2} b\right)^{-3}} \)
68. \( \left(\frac{15 r^{2} s^{-2} t}{3 r^{-3} s^{3}}\right)^{-3} \)
70. \( \left(\frac{2 L x^{-2} y^{2} z^{-2}}{7 x^{3} y^{-1}}\right)^{-2} \)
(
Q:
Darla and her friend Penny left their office at
the same time and began traveling down the
same road in the same direction. Darla traveled
at a speed of 65 mph while Penny drove at 70
mph. How many hours was it before Penny was
5 miles ahead of Darla?
Q:
a) \( \frac{1}{3} x+\frac{5}{4}=\frac{4}{5} \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit