Trigonometry Questions from Dec 03,2024

Browse the Trigonometry Q&A Archive for Dec 03,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
An electrician leans an extension ladder against the outside wall of a house so that it reaches an electric box 27 feet up. The ladder makes an angle of \( 62^{\circ} \) with the ground. Find the length of the ladder. Round your answer to the nearest tenth of a foot if necessary. Dada la siguiente función trigonométrica \( f(x)=4 \) sen \( \left(-2 x+\frac{7 \pi}{5}\right)-4 \). Se pide: \( \begin{array}{ll}\text { a. Determinar las características de la función } & \text { (2 Ptos) } \\ \text { b. Realizar su gráfica } & \text { (2 Ptos) }\end{array} \) 6. Let \( \theta \) denote the angle between the straight lines with equations \( \frac{x}{a}+\frac{y}{b}=1 \) and \( \frac{x}{a}-\frac{y}{b}=1 \). Then \( \cot \theta= \) (A) \( \infty \) (B) \( \frac{a^{2}-b^{2}}{2 a b} \) (C) \( \frac{2 a b}{a^{2}-b^{2}} \) (D) \( \frac{a^{2}+b^{2}}{2 a b} \) (E) None of the above \( \tan \frac { 5 \pi } { 4 } = \tan 150 ^ { \circ } = ( \frac { - \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } ) \) \( \operatorname { Tan } 150 ^ { \circ } = ( \frac { - \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } ) \) \( \tan 10 x=\cot 5 x \) then \( x= \) ? \( \left. \begin{array} { l } { f ( x ) = \cos ^ { 2 } ( 3 x + \sqrt { x } ) } \\ { f ( x ) = \tan ( x ^ { 2 } + 1 ) ^ { 2 } } \\ { f ( x ) = \frac { \sin x ^ { 2 } } { 1 + \cos 3 x ^ { 2 } } } \end{array} \right. \) 5. Define \( A=\sin ^{2} \theta+\cos ^{4} \theta \). Which of the following is true? (A) \( 1 \leq A \leq 2 \) (B) \( \frac{3}{4} \leq A \leq 1 \) (C) \( \frac{13}{16} \leq A \leq 1 \) (D) \( \frac{3}{4} \leq A \leq \frac{13}{16} \) (E) \( 0 \leq A \leq 1 \) 4. \( \frac{1}{2 \sin 10^{\circ}}-2 \sin 70^{\circ}= \) Find all solution of the equations in the interval \( [0,2 \pi] \) 11. \( 2 \sin x+\sqrt{3}=0 \) 12. \( (\cos x-1)(\sin x+1)=0 \) 13. \( 2 \cos ^{2} t+3 \cos t+1=0 \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy