Watkins Christensen
08/10/2023 · escuela secundaria
Cis Cengage Learning Part 1 of 3 Apply the general power rule which states that if \( y=\left[u(x)^{n}\right] \), where \( u \) is a differenti \[ \begin{aligned} \frac{d y}{d x} & =n[u(x)]^{n-1} \frac{d u}{d x}\end{aligned} \] \( \begin{aligned} \text { Let } u & =8-x^{2} \text { and substitute } u \text { for } 8-x^{2} \text { in the original equation. } \\ y & =9\left(8-x^{2}\right)^{6}\end{aligned} \)
Solución ThothAI de Upstudy
Respuesta verificada por el tutor
Respuesta rápida
The derivative of \( y = 9(8-x^{2})^{6} \) with respect to \( x \) is \( \frac{dy}{dx} = -12x[8-x^{2}]^{5} \).
Solución paso a paso
Respondido por UpStudy AI y revisado por un tutor profesional
Estudio de ThothAI
Autodesarrollado y en constante mejora
El producto Thoth AI se actualiza y optimiza constantemente.
Cubre todos los temas principales
Capaz de manejar tareas de matemáticas, química, biología, física y más.
Instantáneo y preciso
Proporciona soluciones y orientación inmediatas y precisas.
Probar ahora
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar