Q:
25. \( f(x)=4(x+3)^{3} \)
Q:
Find the vertical asymptotes of the rational function.
\( h(x)=\frac{9 x}{(x+6)(x-7)} \)
A. \( x=6, x=-7 \)
B. \( x=-9 \)
C. \( x=-6, x=7 \)
D. \( x=-6, x=7, x=-9 \)
Q:
Given \( f(x)=4(x-1)^{3}(x-3)(4 x-5)^{2}(x+1)^{5} \)
List the zeroes \( ( \) ex. \( 4,6,-2): \)
Degree:
End behavior:
\[ \text { As } x \rightarrow-\infty, f(x) \rightarrow \text { Select an answer } v \]
As \( x \rightarrow+\infty, f(x) \rightarrow \) Select an answer \( v \)
Q:
Given the function \( P(x)=(x-2)^{2}(x-4) \), find the following:
a) \( y \)-intercept as an ordered pair:
b) \( x \)-intercepts as ordered pairs:
c) When \( x \rightarrow \infty, f(x) \rightarrow ? \vee \)
d) When \( x \rightarrow-\infty, f(x) \rightarrow ? \vee \).
Q:
Find an equation for the ellipse described.
Foci at \( (0, \pm 2) ; y \)-intercepts are \( \pm 3 \)
Q:
Contexto: Este lipo de preguntas se desarrollan en torno a un (1) enunciado y cuatro (4) opciones de respuesta. Solo una (1) de
estas opciones responde correctamente a la pregunta.
Considerando los vectores \( \vec{a}=(2,-3,5) \) y \( \vec{b}=(-1,4,2) \), selecrione la opción que representa correctamente el producto escalar \( \vec{a} \cdot \vec{b} \).
Q:
For the line through \( \left(\frac{1}{3}, \frac{1}{8}\right) \) and \( \left(-\frac{7}{6}, \frac{5}{8}\right) \), find the parametrization of \( y(t) \) if \( x(t)=\frac{1}{3}-\frac{3}{2} t \).
(Use symbolic notation and fractions where needed.)
Q:
For the line through \( (-9,15) \) with slope 9 find the parametrization of \( y(t) \) with given \( x(t)=-9+t \).
Use symbolic notation and fractions where needed.)
Q:
The population in a certain city was 54,000 in 2000 , and its future size is predicted to be \( P(t)=54,000 e^{0.017 t} \), where \( t \) is
the number of years after 2000 .
Complete parts a through d below.
a. Does this model indicate that the population is increasing or decreasing?
b. Use this function to estimate the population of the city in 2002 .
(Round to the nearest whole number as needed.)
Q:
Part 2 of 3
an antique table increases in value according to the function \( v(x)=650(1.03)^{x} \) dollars, where \( x \) is the number of years
after 1980 .
a. How much was the table worth in 1980 ?
b. If the pattern indicated by the function remains valid, what was the value of the table in 2005 ? 1
c. Use a table or a graph to estimate the year when this table will reach double its 1980 value.
a. The table was worth \( \$ 650 \) in 1980.
(Round to the nearest cent as needed.)
b. The value of the table was \( \$ \square \) in 2005 .
(Round to the nearest cent as needed.)
Pon a prueba tus conocimientos sobre Precálculo!
Seleccione la respuesta correcta y verifique su respuesta
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar