Q:
\begin{tabular}{l} - determinar o termo geral de uma sucessão; \\ - classifica- una sucessão quanto à monotonia; \\ - classificar uma sucessão quanto do Limite; \\ - calcular o limite de uma sucessão; \\ - resolver problemas práticos da vida usando as \\ propriedades de Progressões Aritméticas e de \\ \hline\end{tabular}
Q:
3. Squirrel Population A grey squirrel population was intro-
duced in a certain county of Great Britain 30 years ago.
Biologists observe that the population doubles every 6 years,
and now the population is 100,000 .
(a) What was the initial size of the squirrel population?
(b) Estimate the squirrel population 10 years from now.
(c) Sketch a graph of the squirrel population.
Q:
(a) Let one parametric equation be \( x=t \). Find the parametric equation for \( y \).
\( y=t^{2}+4 t \) for \( t \) in \( (-\infty, \infty) \)
(Do not factor.)
(b) Let one parametric equation be \( x=t-2 \). Find the parametric equation for \( y \).
\( y=\square \) for \( t \) in \( (-\infty, \infty) \)
(Simplify your answer.)
Q:
\( x=11 \cos t, y=11 \sin t \)
The rectangular equation for the plane curve is \( \square \).
Q:
\( x=\sqrt{t}, y=2 t-3 \) for \( t \) in \( [0,4] \)
The equivalent rectangular equation is \( \square \) for \( x \) over the interval \( \square \).
(Simplify your answers.)
Q:
If a polynomial function has a degree of 4 and a positive leading coefficient, what can you say about its end behavior?
Q:
3. Un granjero tiene 200 metros de cerca con la
cual puede delimitar un terreno rectangular. Un
lado del terreno puede aprovechar una cerca ya
existente. ¿Cuál es el área máxima que puede
cercarse?
Q:
3. Un granjero tiene 200 metros de cerca con la
cual puede delimitar un terreno rectangular. Un
lado del terreno puede aprovechar una cerca ya
existente. ¿Cuál es el área máxima que puede
cercarse?
Q:
Which of the following equations could be the equation
of the horizontal asymptote of
\( y=\frac{x-3}{x^{2}-6 x-7} \)
Select one:
a. \( y=-1 \)
b. \( y=0 \)
c. \( y=3 \)
d. There is no horizontal asymptote.
Q:
The exponential model \( \mathrm{A}=905 e^{0.009 \mathrm{t}} \) describes the population, A , of a country in millions, t years after 2003. Use the
model to determine the population of the country in 2003 .
The population of the country in 2003 was \( \square \) million.
Pon a prueba tus conocimientos sobre Precálculo!
Seleccione la respuesta correcta y verifique su respuesta
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar