Question
upstudy study bank question image url

a. \( \frac{\sin 2 A}{1+\cos 2 A}=\tan A \)

Ask by Bradley Little. in Nepal
Nov 11,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

The identity \( \frac{\sin 2A}{1 + \cos 2A} = \tan A \) is proven true using double angle formulas.

Solution

To prove the identity \( \frac{\sin 2A}{1 + \cos 2A} = \tan A \), we can start by using the double angle formulas for sine and cosine: \[ \sin 2A = 2 \sin A \cos A \] \[ \cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A \] Now, substituting these into the left-hand side of the equation: \[ \frac{\sin 2A}{1 + \cos 2A} = \frac{2 \sin A \cos A}{1 + (2 \cos^2 A - 1)} \] Simplifying the denominator: \[ 1 + \cos 2A = 1 + (2 \cos^2 A - 1) = 2 \cos^2 A \] Now we can rewrite the left-hand side: \[ \frac{2 \sin A \cos A}{2 \cos^2 A} \] We can simplify this expression: \[ = \frac{2 \sin A \cos A}{2 \cos^2 A} = \frac{\sin A}{\cos A} = \tan A \] Thus, we have shown that: \[ \frac{\sin 2A}{1 + \cos 2A} = \tan A \] Therefore, the identity is proven to be true: \[ \frac{\sin 2A}{1 + \cos 2A} = \tan A \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the equation \( \frac{\sin 2 A}{1+\cos 2 A}=\tan A \), we can use some trigonometric identities. Recall that \( \sin 2A = 2 \sin A \cos A \) and \( \cos 2A = 2\cos^2 A - 1 \). Substituting these identities into the left side gives us: \[ \frac{2 \sin A \cos A}{1 + (2\cos^2 A - 1)} = \frac{2 \sin A \cos A}{2 \cos^2 A} = \frac{\sin A}{\cos A} = \tan A \] Both sides of the equation are indeed equal, confirming that the original expression holds true for values where \( A \) is defined! Keep in mind that \( A \) should be within the domain where the tangent function is defined (i.e., not at \( A = n\frac{\pi}{2} \) where \( n \) is an integer).

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy