Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To solve the equation \( \frac{\sin 2 A}{1+\cos 2 A}=\tan A \), we can use some trigonometric identities. Recall that \( \sin 2A = 2 \sin A \cos A \) and \( \cos 2A = 2\cos^2 A - 1 \). Substituting these identities into the left side gives us: \[ \frac{2 \sin A \cos A}{1 + (2\cos^2 A - 1)} = \frac{2 \sin A \cos A}{2 \cos^2 A} = \frac{\sin A}{\cos A} = \tan A \] Both sides of the equation are indeed equal, confirming that the original expression holds true for values where \( A \) is defined! Keep in mind that \( A \) should be within the domain where the tangent function is defined (i.e., not at \( A = n\frac{\pi}{2} \) where \( n \) is an integer).
