Answer
Here are the solutions for each system of equations using the equalization method:
**a)**
- Equations:
1. \( 2x + y = 18 \)
2. \( 4x - y = 0 \)
- Solution: \( (3, 12) \)
**b)**
- Equations:
1. \( x - 2y = -2 \)
2. \( 2x + y = 7 \)
3. \( x + y = 4 \)
- Solution: No solution
**c)**
- Equations:
1. \( 5x + y = 10 \)
2. \( 2x - y = 4 \)
- Solution: \( (2, 0) \)
**d)**
- Equations:
1. \( 2x - y = 1 \)
2. \( x + y = 3 \)
3. \( 2x - y = 0 \)
- Solution: No solution
**Summary of Solutions:**
- a) \( (3, 12) \)
- b) No solution
- c) \( (2, 0) \)
- d) No solution
Solution
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}2x+y=18\\4x-y=0\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}y=18-2x\\4x-y=0\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(4x-\left(18-2x\right)=0\)
- step3: Simplify:
\(6x-18=0\)
- step4: Move the constant to the right side:
\(6x=0+18\)
- step5: Remove 0:
\(6x=18\)
- step6: Divide both sides:
\(\frac{6x}{6}=\frac{18}{6}\)
- step7: Divide the numbers:
\(x=3\)
- step8: Substitute the value of \(x:\)
\(y=18-2\times 3\)
- step9: Simplify:
\(y=12\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=3\\y=12\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=3\\y=12\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(3,12\right)\)
Solve the system of equations \( 5 x+y=10;2 x-y=4 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}5x+y=10\\2x-y=4\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}y=10-5x\\2x-y=4\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(2x-\left(10-5x\right)=4\)
- step3: Simplify:
\(7x-10=4\)
- step4: Move the constant to the right side:
\(7x=4+10\)
- step5: Add the numbers:
\(7x=14\)
- step6: Divide both sides:
\(\frac{7x}{7}=\frac{14}{7}\)
- step7: Divide the numbers:
\(x=2\)
- step8: Substitute the value of \(x:\)
\(y=10-5\times 2\)
- step9: Simplify:
\(y=0\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=2\\y=0\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=2\\y=0\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(2,0\right)\)
Solve the system of equations \( 2 x-y=1;x+y=3;2 x-y=0 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}2x-y=1\\x+y=3\\2x-y=0\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}y=-1+2x\\x+y=3\\2x-y=0\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(\left\{ \begin{array}{l}x-1+2x=3\\2x-\left(-1+2x\right)=0\end{array}\right.\)
- step3: Simplify:
\(\left\{ \begin{array}{l}3x-1=3\\1=0\end{array}\right.\)
- step4: Calculate:
\(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \end{array}\right.\)
- step5: Rewrite:
\((x, y) \in \varnothing\)
Solve the system of equations \( x-2 y=-2;2 x+y=7;x+y=4 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x-2y=-2\\2x+y=7\\x+y=4\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=-2+2y\\2x+y=7\\x+y=4\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left\{ \begin{array}{l}2\left(-2+2y\right)+y=7\\-2+2y+y=4\end{array}\right.\)
- step3: Simplify:
\(\left\{ \begin{array}{l}-4+5y=7\\-2+3y=4\end{array}\right.\)
- step4: Solve the equation:
\(\left\{ \begin{array}{l}y=\frac{11}{5}\\-2+3y=4\end{array}\right.\)
- step5: Substitute the value of \(y:\)
\(-2+3\times \frac{11}{5}=4\)
- step6: Simplify:
\(\frac{23}{5}=4\)
- step7: Calculate:
\(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \end{array}\right.\)
- step8: Rewrite:
\((x, y) \in \varnothing\)
Aquí están las soluciones para cada uno de los sistemas de ecuaciones utilizando el método de igualación:
### a)
Sistema de ecuaciones:
\[
\begin{align*}
1) & \quad 2x + y = 18 \\
2) & \quad 4x - y = 0
\end{align*}
\]
**Solución:**
Resolviendo el sistema, encontramos:
\[
(x, y) = (3, 12)
\]
### b)
Sistema de ecuaciones:
\[
\begin{align*}
1) & \quad x - 2y = -2 \\
2) & \quad 2x + y = 7 \\
3) & \quad x + y = 4
\end{align*}
\]
**Solución:**
Este sistema no tiene solución:
\[
(x, y) \in \varnothing \quad \text{(No hay solución)}
\]
### c)
Sistema de ecuaciones:
\[
\begin{align*}
1) & \quad 5x + y = 10 \\
2) & \quad 2x - y = 4
\end{align*}
\]
**Solución:**
Resolviendo el sistema, encontramos:
\[
(x, y) = (2, 0)
\]
### d)
Sistema de ecuaciones:
\[
\begin{align*}
1) & \quad 2x - y = 1 \\
2) & \quad x + y = 3 \\
3) & \quad 2x - y = 0
\end{align*}
\]
**Solución:**
Este sistema no tiene solución:
\[
(x, y) \in \varnothing \quad \text{(No hay solución)}
\]
### Resumen de soluciones:
- a) \( (3, 12) \)
- b) No hay solución
- c) \( (2, 0) \)
- d) No hay solución
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution