Question
upstudy study bank question image url

a) \( (8 x+5)(9 x-12)= \) b) \( (7 x-4)\left(8 x^{2}+9 x\right)= \) c) \( 8 x^{4}\left(9 x^{2}+6 x^{3}-12 x^{4}\right)= \) d) \( \left(\frac{2}{7} x^{3}\right)\left(\frac{3}{5} x^{5}\right)= \) e) \( \left(2 x^{3} y+x^{2} y^{2}\right)\left(7 x^{2} y-2 x y\right)= \)

Ask by Barber Jimenez. in Mexico
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) \( (8x + 5)(9x - 12) = 72x^2 - 51x - 60 \) b) \( (7x - 4)(8x^2 + 9x) = 56x^3 + 31x^2 - 36x \) c) \( 8x^4(9x^2 + 6x^3 - 12x^4) = 72x^6 + 48x^7 - 96x^8 \) d) \( \left(\frac{2}{7}x^3\right)\left(\frac{3}{5}x^5\right) = \frac{6}{35}x^8 \) e) \( \left(2x^3y + x^2y^2\right)\left(7x^2y - 2xy\right) = 14x^5y^2 - 4x^4y^2 + 7x^4y^3 - 2x^3y^3 \)

Solution

Simplify the expression by following steps: - step0: Multiply the terms: \(\left(7x-4\right)\left(8x^{2}+9x\right)\) - step1: Apply the distributive property: \(7x\times 8x^{2}+7x\times 9x-4\times 8x^{2}-4\times 9x\) - step2: Multiply the terms: \(56x^{3}+63x^{2}-32x^{2}-36x\) - step3: Subtract the terms: \(56x^{3}+31x^{2}-36x\) Expand the expression \( 8 x^{4}(9 x^{2}+6 x^{3}-12 x^{4}) \) Simplify the expression by following steps: - step0: Simplify: \(8x^{4}\left(9x^{2}+6x^{3}-12x^{4}\right)\) - step1: Rewrite the expression: \(8\left(9x^{2}+6x^{3}-12x^{4}\right)x^{4}\) - step2: Multiply the expression: \(24\left(3+2x-4x^{2}\right)x^{6}\) - step3: Rearrange the terms: \(72x^{6}+48x^{7}-96x^{8}\) Expand the expression \( \left(2 x^{3} y+x^{2} y^{2}\right)\left(7 x^{2} y-2 x y\right) \) Simplify the expression by following steps: - step0: Simplify: \(\left(2x^{3}y+x^{2}y^{2}\right)\left(7x^{2}y-2xy\right)\) - step1: Multiply the expression: \(\left(14x^{2}-4x+7yx-2y\right)y^{2}x^{3}\) - step2: Rearrange the terms: \(14x^{5}y^{2}-4x^{4}y^{2}+7y^{3}x^{4}-2y^{3}x^{3}\) Expand the expression \( (8 x+5)(9 x-12) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(8x+5\right)\left(9x-12\right)\) - step1: Apply the distributive property: \(8x\times 9x-8x\times 12+5\times 9x-5\times 12\) - step2: Multiply the terms: \(72x^{2}-96x+45x-60\) - step3: Add the terms: \(72x^{2}-51x-60\) Expand the expression \( \left(\frac{2}{7} x^{3}\right)\left(\frac{3}{5} x^{5}\right) \) Simplify the expression by following steps: - step0: Simplify: \(\left(\frac{2}{7}x^{3}\right)\left(\frac{3}{5}x^{5}\right)\) - step1: Multiply the terms: \(\frac{2}{7}x^{3}\left(\frac{3}{5}x^{5}\right)\) - step2: Multiply the terms: \(\frac{2}{7}x^{3}\times \frac{3}{5}x^{5}\) - step3: Multiply the numbers: \(\frac{6}{35}x^{3}\times x^{5}\) - step4: Multiply the terms: \(\frac{6}{35}x^{8}\) Aquí están las soluciones a cada uno de los problemas: a) \( (8 x+5)(9 x-12) = 72x^{2}-51x-60 \) b) \( (7 x-4)(8 x^{2}+9 x) = 56x^{3}+31x^{2}-36x \) c) \( 8 x^{4}(9 x^{2}+6 x^{3}-12 x^{4}) = 72x^{6}+48x^{7}-96x^{8} \) d) \( \left(\frac{2}{7} x^{3}\right)\left(\frac{3}{5} x^{5}\right) = \frac{6}{35}x^{8} \) e) \( \left(2 x^{3} y+x^{2} y^{2}\right)\left(7 x^{2} y-2 x y\right) = 14x^{5}y^{2}-4x^{4}y^{2}+7y^{3}x^{4}-2y^{3}x^{3} \) Si necesitas más ayuda o explicaciones sobre algún paso, no dudes en preguntar.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Let's have some fun with these polynomial expressions! For the first expression, \( (8x + 5)(9x - 12) \): You can apply the distributive property (commonly known as FOIL for binomials) to expand this. The result will be \( 72x^2 - 96x + 45 \). Now, for the second one, \( (7x - 4)(8x^{2} + 9x) \): Again, use the distributive property! The expansion will yield \( 56x^3 + 63x^2 - 32x \). Keep an eye out for signs; that’s where mistakes tend to sneak in! Always double-check your work with substitutions to catch any potential oversights! As for real-world applications, polynomial expressions often model various phenomena in fields such as physics, economics, and engineering, like calculating areas or optimizing profit functions. So, these expressions not only help you solve math problems but also reflect real-life situations! For further practice, consider looking up polynomial identities or exploring factorization techniques; they’ll make you a pro at these!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy