Responder
a) \( (8x + 5)(9x - 12) = 72x^2 - 51x - 60 \)
b) \( (7x - 4)(8x^2 + 9x) = 56x^3 + 31x^2 - 36x \)
c) \( 8x^4(9x^2 + 6x^3 - 12x^4) = 72x^6 + 48x^7 - 96x^8 \)
d) \( \left(\frac{2}{7}x^3\right)\left(\frac{3}{5}x^5\right) = \frac{6}{35}x^8 \)
e) \( \left(2x^3y + x^2y^2\right)\left(7x^2y - 2xy\right) = 14x^5y^2 - 4x^4y^2 + 7x^4y^3 - 2x^3y^3 \)
Solución
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(7x-4\right)\left(8x^{2}+9x\right)\)
- step1: Apply the distributive property:
\(7x\times 8x^{2}+7x\times 9x-4\times 8x^{2}-4\times 9x\)
- step2: Multiply the terms:
\(56x^{3}+63x^{2}-32x^{2}-36x\)
- step3: Subtract the terms:
\(56x^{3}+31x^{2}-36x\)
Expand the expression \( 8 x^{4}(9 x^{2}+6 x^{3}-12 x^{4}) \)
Simplify the expression by following steps:
- step0: Simplify:
\(8x^{4}\left(9x^{2}+6x^{3}-12x^{4}\right)\)
- step1: Rewrite the expression:
\(8\left(9x^{2}+6x^{3}-12x^{4}\right)x^{4}\)
- step2: Multiply the expression:
\(24\left(3+2x-4x^{2}\right)x^{6}\)
- step3: Rearrange the terms:
\(72x^{6}+48x^{7}-96x^{8}\)
Expand the expression \( \left(2 x^{3} y+x^{2} y^{2}\right)\left(7 x^{2} y-2 x y\right) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(2x^{3}y+x^{2}y^{2}\right)\left(7x^{2}y-2xy\right)\)
- step1: Multiply the expression:
\(\left(14x^{2}-4x+7yx-2y\right)y^{2}x^{3}\)
- step2: Rearrange the terms:
\(14x^{5}y^{2}-4x^{4}y^{2}+7y^{3}x^{4}-2y^{3}x^{3}\)
Expand the expression \( (8 x+5)(9 x-12) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(8x+5\right)\left(9x-12\right)\)
- step1: Apply the distributive property:
\(8x\times 9x-8x\times 12+5\times 9x-5\times 12\)
- step2: Multiply the terms:
\(72x^{2}-96x+45x-60\)
- step3: Add the terms:
\(72x^{2}-51x-60\)
Expand the expression \( \left(\frac{2}{7} x^{3}\right)\left(\frac{3}{5} x^{5}\right) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(\frac{2}{7}x^{3}\right)\left(\frac{3}{5}x^{5}\right)\)
- step1: Multiply the terms:
\(\frac{2}{7}x^{3}\left(\frac{3}{5}x^{5}\right)\)
- step2: Multiply the terms:
\(\frac{2}{7}x^{3}\times \frac{3}{5}x^{5}\)
- step3: Multiply the numbers:
\(\frac{6}{35}x^{3}\times x^{5}\)
- step4: Multiply the terms:
\(\frac{6}{35}x^{8}\)
Aquí están las soluciones a cada uno de los problemas:
a) \( (8 x+5)(9 x-12) = 72x^{2}-51x-60 \)
b) \( (7 x-4)(8 x^{2}+9 x) = 56x^{3}+31x^{2}-36x \)
c) \( 8 x^{4}(9 x^{2}+6 x^{3}-12 x^{4}) = 72x^{6}+48x^{7}-96x^{8} \)
d) \( \left(\frac{2}{7} x^{3}\right)\left(\frac{3}{5} x^{5}\right) = \frac{6}{35}x^{8} \)
e) \( \left(2 x^{3} y+x^{2} y^{2}\right)\left(7 x^{2} y-2 x y\right) = 14x^{5}y^{2}-4x^{4}y^{2}+7y^{3}x^{4}-2y^{3}x^{3} \)
Si necesitas más ayuda o explicaciones sobre algún paso, no dudes en preguntar.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución