Rewrite \( \frac{\cos \theta+\sin \theta}{\sin \theta}+\frac{\sin \theta-\cos \theta}{\cos \theta} \) over a common denominator. Type your answer in terms of sine and/or cosine. \( \frac{\cos \theta+\sin \theta}{\sin \theta}+\frac{\sin \theta-\cos \theta}{\cos \theta}=\square \) (Simplify your answer.)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To rewrite the expression \( \frac{\cos \theta+\sin \theta}{\sin \theta}+\frac{\sin \theta-\cos \theta}{\cos \theta} \) over a common denominator, we first find the common denominator, which is \( \sin \theta \cos \theta \). Rewriting each term with the common denominator: 1. The first term: \[ \frac{\cos \theta + \sin \theta}{\sin \theta} = \frac{(\cos \theta + \sin \theta)\cos \theta}{\sin \theta \cos \theta} = \frac{\cos^2 \theta + \sin \theta \cos \theta}{\sin \theta \cos \theta} \] 2. The second term: \[ \frac{\sin \theta - \cos \theta}{\cos \theta} = \frac{(\sin \theta - \cos \theta)\sin \theta}{\sin \theta \cos \theta} = \frac{\sin^2 \theta - \cos \theta \sin \theta}{\sin \theta \cos \theta} \] Now, combine the two fractions: \[ \frac{\cos^2 \theta + \sin \theta \cos \theta + \sin^2 \theta - \cos \theta \sin \theta}{\sin \theta \cos \theta} \] Notice that \( \sin \theta \cos \theta \) terms cancel out: \[ \cos^2 \theta + \sin^2 \theta = 1 \] So we get: \[ \frac{1}{\sin \theta \cos \theta} \] Thus, the final simplified answer is: \[ \frac{1}{\sin \theta \cos \theta} \]