Question
upstudy study bank question image url

12. Simplify the following: \( \begin{array}{ll}\text { (a) } \frac{\sin \left(180^{\circ}+2 x\right)}{\cos \left(180^{\circ}+x\right)} & \text { (b) } \frac{\tan 45^{\circ}-\sin ^{2}(-x)}{\sin ^{2}\left(90^{\circ}+x\right)} \\ \text { (c) } \frac{\sin 4 x}{1-2 \cos ^{2} 2 x} & \text { (d) } \frac{\sin \left(-180^{\circ}-\alpha\right) \tan (-\alpha) \cos \left(360^{\circ}-\alpha\right)}{\cos ^{2}\left(90^{\circ}+\alpha\right)+\sin ^{2}\left(180^{\circ}+\alpha\right)}\end{array} \)

Ask by Salinas Li. in South Africa
Mar 11,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

(a) \(2\sin x\) (b) \(1\) (c) \(-\tan4x\) (d) \(-\frac{1}{2}\)

Solution

**(a)** We start with \[ \frac{\sin\left(180^\circ+2x\right)}{\cos\left(180^\circ+x\right)}. \] Recall that \[ \sin(180^\circ+\theta) = -\sin\theta \quad \text{and} \quad \cos(180^\circ+\theta) = -\cos\theta. \] Thus, \[ \sin\left(180^\circ+2x\right) = -\sin2x \quad \text{and} \quad \cos\left(180^\circ+x\right) = -\cos x. \] Substitute these into the expression: \[ \frac{-\sin2x}{-\cos x} = \frac{\sin2x}{\cos x}. \] Now, use the double-angle formula for sine: \[ \sin2x = 2\sin x\,\cos x. \] So, \[ \frac{2\sin x\,\cos x}{\cos x} = 2\sin x. \] --- **(b)** We have \[ \frac{\tan45^\circ - \sin^2(-x)}{\sin^2(90^\circ+x)}. \] Since \[ \tan45^\circ = 1, \] and using that sine is an odd function, \[ \sin(-x) = -\sin x \quad \Rightarrow \quad \sin^2(-x) = \sin^2x. \] Thus, the numerator becomes: \[ 1 - \sin^2x. \] Next, recall the co-function identity: \[ \sin(90^\circ+x) = \cos x, \] so \[ \sin^2(90^\circ+x) = \cos^2x. \] The expression now is: \[ \frac{1-\sin^2x}{\cos^2x}. \] Use the Pythagorean identity: \[ 1-\sin^2x=\cos^2x. \] Thus, the expression simplifies to: \[ \frac{\cos^2x}{\cos^2x} = 1. \] --- **(c)** We need to simplify \[ \frac{\sin4x}{1-2\cos^2 2x}. \] Notice that the cosine double-angle formula gives: \[ \cos4x = 2\cos^2 2x-1. \] Rearrange this to express \(1-2\cos^2 2x\): \[ 1-2\cos^2 2x = -(2\cos^2 2x-1)=-\cos4x. \] Substitute back into the original expression: \[ \frac{\sin4x}{-\cos4x} = -\frac{\sin4x}{\cos4x} = -\tan4x. \] --- **(d)** We simplify \[ \frac{\sin(-180^\circ-\alpha)\,\tan(-\alpha)\,\cos(360^\circ-\alpha)}{\cos^2(90^\circ+\alpha)+\sin^2(180^\circ+\alpha)}. \] *Numerator:* - Use the odd property of sine: \[ \sin(-180^\circ-\alpha) = -\sin(180^\circ+\alpha). \] And note that \[ \sin(180^\circ+\alpha) = -\sin\alpha, \] so \[ \sin(-180^\circ-\alpha) = -(-\sin\alpha)=\sin\alpha. \] - For tangent, since it is odd: \[ \tan(-\alpha) = -\tan\alpha. \] - For cosine, use the periodic property: \[ \cos(360^\circ-\alpha)=\cos\alpha. \] Thus, the numerator becomes: \[ \sin\alpha\cdot(-\tan\alpha)\cdot\cos\alpha = -\sin\alpha\,\tan\alpha\,\cos\alpha. \] Since \[ \tan\alpha=\frac{\sin\alpha}{\cos\alpha}, \] the numerator simplifies to: \[ -\sin\alpha\cdot\frac{\sin\alpha}{\cos\alpha}\cdot\cos\alpha = -\sin^2\alpha. \] *Denominator:* - We know: \[ \cos(90^\circ+\alpha) = -\sin\alpha \quad \Rightarrow \quad \cos^2(90^\circ+\alpha)=\sin^2\alpha. \] - And \[ \sin(180^\circ+\alpha) = -\sin\alpha \quad \Rightarrow \quad \sin^2(180^\circ+\alpha)=\sin^2\alpha. \] Thus, the denominator becomes: \[ \sin^2\alpha+\sin^2\alpha = 2\sin^2\alpha. \] Combining numerator and denominator yields: \[ \frac{-\sin^2\alpha}{2\sin^2\alpha}=-\frac{1}{2}. \] --- **Final Answers:** (a) \(2\sin x\) (b) \(1\) (c) \(-\tan4x\) (d) \(-\frac{1}{2}\)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify each of the given expressions, we can apply some trigonometric identities and properties: (a) \( \frac{\sin(180^{\circ}+2x)}{\cos(180^{\circ}+x)} \) Using the identities: - \( \sin(180^{\circ}+x) = -\sin x \) - \( \cos(180^{\circ}+x) = -\cos x \) We get: \[ \frac{\sin(180^{\circ}+2x)}{\cos(180^{\circ}+x)} = \frac{-\sin 2x}{-\cos x} = \frac{\sin 2x}{\cos x} = \tan 2x \] (b) \( \frac{\tan 45^{\circ}-\sin^{2}(-x)}{\sin^{2}(90^{\circ}+x)} \) Knowing: - \( \tan 45^{\circ} = 1 \) - \( \sin(-x) = -\sin x \) - \( \sin(90^{\circ}+x) = \cos x \) We find: \[ \frac{1 - \sin^2(-x)}{\sin^2(90^{\circ}+x)} = \frac{1 - \sin^2 x}{\cos^2 x} = \frac{\cos^2 x}{\cos^2 x} = 1 \] (c) \( \frac{\sin 4x}{1-2\cos^{2} 2x} \) Utilizing the identity: - \( \cos^2 2x = \frac{1 + \cos 4x}{2} \) We can rewrite: \[ 1 - 2\cos^{2} 2x = 1 - (1 + \cos 4x) = -\cos 4x \] Thus: \[ \frac{\sin 4x}{1 - 2\cos^{2} 2x} = \frac{\sin 4x}{-\cos 4x} = -\tan 4x \] (d) \( \frac{\sin(-180^{\circ}-\alpha)\tan(-\alpha)\cos(360^{\circ}-\alpha)}{\cos^{2}(90^{\circ}+\alpha)+\sin^{2}(180^{\circ}+\alpha)} \) Using: - \( \sin(-\theta) = -\sin \theta \) - \( \tan(-\alpha) = -\tan \alpha \) - \( \cos(360^{\circ}-\alpha) = \cos \alpha \) - \( \cos(90^{\circ}+\alpha) = -\sin \alpha \) and \( \sin(180^{\circ}+\alpha) = -\sin \alpha \) We can replace: \[ \sin(-180^{\circ}-\alpha) = -\sin(\alpha), \quad \sin^{2}(180^{\circ}+\alpha) = \sin^{2}(\alpha) \] This results in: \[ \cos^{2}(90^{\circ}+\alpha) + \sin^{2}(180^{\circ}+\alpha) = \sin^2 \alpha + \sin^2 \alpha = 2\sin^2 \alpha \] Now, substituting back: \[ \frac{-\sin \alpha (-\tan \alpha) \cos \alpha}{2\sin^2 \alpha} = \frac{\sin \alpha \tan \alpha \cos \alpha}{2\sin^2 \alpha} = \frac{\tan \alpha \cos \alpha}{2\sin \alpha} = \frac{\cos \alpha}{2\sin \alpha} = \frac{1}{2}\cot \alpha \] In summary, the simplifications yield: (a) \( \tan 2x \) (b) \( 1 \) (c) \( -\tan 4x \) (d) \( \frac{1}{2} \cot \alpha \)

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy