Factor the following polynomials by GCF and/or grouping. Show ALL work! \( \begin{array}{ll}\text { 1.) } 5 x^{3}-6 x^{2}-5 x+6 & \text { 16.) } 3 x^{2}-27 \\ \text { 2.) } 6 x^{3}+12 x^{2}+6 x & \text { 17.) } 3 x^{3}+3 x^{2}+9 x+9 \\ \text { 3.) } x^{6}-x^{5}+x^{4}-x^{3} & \text { 18.) }-3 x^{6}+24 x^{3} \\ \text { 4.) } 10 x^{3}+15 x^{2}+20 x+30 & \text { 19.) }-3 x^{6}-12 x^{3} \\ \text { 5.) } 100 x^{7}-25 x^{5} & \text { 20.) } 30 x^{3}+25 x^{2}+42 x+35\end{array} \)
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
The Deep Dive
Sure! Let’s factor these polynomials step by step. **1.)** \( 5x^3 - 6x^2 - 5x + 6 \) Step 1: Group the terms: \( (5x^3 - 6x^2) + (-5x + 6) \) Step 2: Factor out the GCF from each group: \( x^2(5x - 6) - 1(5x - 6) \) Step 3: Factor by grouping: \( (5x - 6)(x^2 - 1) \) Step 4: Factor \(x^2 - 1\) further: \( (5x - 6)(x - 1)(x + 1) \) Thus, \( 5x^3 - 6x^2 - 5x + 6 = (5x - 6)(x - 1)(x + 1) \). **2.)** \( 6x^3 + 12x^2 + 6x \) Step 1: Factor out the GCF, which is \(6x\): \( 6x(x^2 + 2x + 1) \) Step 2: Notice that \(x^2 + 2x + 1\) is a perfect square: \( 6x(x + 1)^2 \) Thus, \( 6x^3 + 12x^2 + 6x = 6x(x + 1)^2 \). **3.)** \( x^6 - x^5 + x^4 - x^3 \) Step 1: Group the terms: \( (x^6 - x^5) + (x^4 - x^3) \) Step 2: Factor out the GCF from each group, which is \(x^5\) and \(x^3\): \( x^5(x - 1) + x^3(x - 1) \) Step 3: Factor by grouping: \( (x - 1)(x^5 + x^3) \) Step 4: Factor out \(x^3\) from \(x^5 + x^3\): \( (x - 1)x^3(x^2 + 1) \) Thus, \( x^6 - x^5 + x^4 - x^3 = (x - 1)x^3(x^2 + 1) \). **4.)** \( 10x^3 + 15x^2 + 20x + 30 \) Step 1: Group the terms: \( (10x^3 + 15x^2) + (20x + 30) \) Step 2: Factor out the GCF from each group: \( 5x^2(2x + 3) + 10(2x + 3) \) Step 3: Factor by grouping: \( (2x + 3)(5x^2 + 10) \) Step 4: Factor \(5x^2 + 10\): \( (2x + 3)(5(x^2 + 2)) \) Thus, \( 10x^3 + 15x^2 + 20x + 30 = (2x + 3)(5(x^2 + 2)) \). **5.)** \( 100x^7 - 25x^5 \) Step 1: Factor out the GCF, which is \(25x^5\): \( 25x^5(4x^2 - 1) \) Step 2: Recognize \(4x^2 - 1\) is a difference of squares: \( 25x^5(2x - 1)(2x + 1) \) Thus, \( 100x^7 - 25x^5 = 25x^5(2x - 1)(2x + 1) \). **6.)** \( 3x^2 - 27 \) Step 1: Factor out the GCF, which is \(3\): \( 3(x^2 - 9) \) Step 2: Recognize \(x^2 - 9\) is a difference of squares: \( 3(x - 3)(x + 3) \) Thus, \( 3x^2 - 27 = 3(x - 3)(x + 3) \). **7.)** \( 3x^3 + 3x^2 +