Responder
Here are the factorizations for the polynomials:
1. \( 5x^{3} - 6x^{2} - 5x + 6 = (x - 1)(x + 1)(5x - 6) \)
2. \( 6x^{3} + 12x^{2} + 6x = 6x(x + 1)^{2} \)
3. \( x^{6} - x^{5} + x^{4} - x^{3} = x^{3}(x - 1)(x^{2} + 1) \)
4. \( 10x^{3} + 15x^{2} + 20x + 30 = 5(2x + 3)(x^{2} + 2) \)
5. \( 100x^{7} - 25x^{5} = 25x^{5}(2x - 1)(2x + 1) \)
6. \( 3x^{2} - 27 = 3(x - 3)(x + 3) \)
7. \( 3x^{3} + 3x^{2} + 9x + 9 = 3(x + 1)(x^{2} + 3) \)
8. \( -3x^{6} + 24x^{3} = -3x^{3}(x - 2)(x^{2} + 2x + 4) \)
9. \( -3x^{6} - 12x^{3} = -3x^{3}(x^{3} + 4) \)
10. \( 30x^{3} + 25x^{2} + 42x + 35 = (6x + 5)(5x^{2} + 7) \)
Solución
Factor the expression by following steps:
- step0: Factor:
\(6x^{3}+12x^{2}+6x\)
- step1: Rewrite the expression:
\(6x\times x^{2}+6x\times 2x+6x\)
- step2: Factor the expression:
\(6x\left(x^{2}+2x+1\right)\)
- step3: Factor the expression:
\(6x\left(x+1\right)^{2}\)
Factor the expression \( 30 x^{3}+25 x^{2}+42 x+35 \).
Factor the expression by following steps:
- step0: Factor:
\(30x^{3}+25x^{2}+42x+35\)
- step1: Calculate:
\(30x^{3}+42x+25x^{2}+35\)
- step2: Rewrite the expression:
\(6x\times 5x^{2}+6x\times 7+5\times 5x^{2}+5\times 7\)
- step3: Factor the expression:
\(6x\left(5x^{2}+7\right)+5\left(5x^{2}+7\right)\)
- step4: Factor the expression:
\(\left(6x+5\right)\left(5x^{2}+7\right)\)
Factor the expression \( 100 x^{7}-25 x^{5} \).
Factor the expression by following steps:
- step0: Factor:
\(100x^{7}-25x^{5}\)
- step1: Factor the expression:
\(25x^{5}\left(4x^{2}-1\right)\)
- step2: Factor the expression:
\(25x^{5}\left(2x-1\right)\left(2x+1\right)\)
Factor the expression \( 3 x^{2}-27 \).
Factor the expression by following steps:
- step0: Factor:
\(3x^{2}-27\)
- step1: Factor the expression:
\(3\left(x^{2}-9\right)\)
- step2: Factor the expression:
\(3\left(x-3\right)\left(x+3\right)\)
Factor the expression \( 3 x^{3}+3 x^{2}+9 x+9 \).
Factor the expression by following steps:
- step0: Factor:
\(3x^{3}+3x^{2}+9x+9\)
- step1: Evaluate:
\(3x^{3}+9x+3x^{2}+9\)
- step2: Rewrite the expression:
\(3x^{3}+3\times 3x+3x^{2}+3\times 3\)
- step3: Factor the expression:
\(3\left(x^{3}+3x+x^{2}+3\right)\)
- step4: Factor the expression:
\(3\left(x+1\right)\left(x^{2}+3\right)\)
Factor the expression \( -3 x^{6}+24 x^{3 \).
Factor the expression by following steps:
- step0: Factor:
\(-3x^{6}+24x^{3}\)
- step1: Factor the expression:
\(3x^{3}\left(-x^{3}+8\right)\)
- step2: Factor the expression:
\(3x^{3}\left(2-x\right)\left(4+2x+x^{2}\right)\)
Factor the expression \( 5 x^{3}-6 x^{2}-5 x+6 \).
Factor the expression by following steps:
- step0: Factor:
\(5x^{3}-6x^{2}-5x+6\)
- step1: Rewrite the expression:
\(x^{2}\times 5x-x^{2}\times 6-5x+6\)
- step2: Factor the expression:
\(x^{2}\left(5x-6\right)-\left(5x-6\right)\)
- step3: Factor the expression:
\(\left(x^{2}-1\right)\left(5x-6\right)\)
- step4: Factor the expression:
\(\left(x-1\right)\left(x+1\right)\left(5x-6\right)\)
Factor the expression \( x^{6}-x^{5}+x^{4}-x^{3 \).
Factor the expression by following steps:
- step0: Factor:
\(x^{6}-x^{5}+x^{4}-x^{3}\)
- step1: Evaluate:
\(x^{6}+x^{4}-x^{5}-x^{3}\)
- step2: Rewrite the expression:
\(x^{3}\times x^{3}+x^{3}\times x-x^{3}\times x^{2}-x^{3}\)
- step3: Factor the expression:
\(x^{3}\left(x^{3}+x-x^{2}-1\right)\)
- step4: Factor the expression:
\(x^{3}\left(x-1\right)\left(x^{2}+1\right)\)
Factor the expression \( 10 x^{3}+15 x^{2}+20 x+30 \).
Factor the expression by following steps:
- step0: Factor:
\(10x^{3}+15x^{2}+20x+30\)
- step1: Evaluate:
\(10x^{3}+20x+15x^{2}+30\)
- step2: Rewrite the expression:
\(5\times 2x^{3}+5\times 4x+5\times 3x^{2}+5\times 6\)
- step3: Factor the expression:
\(5\left(2x^{3}+4x+3x^{2}+6\right)\)
- step4: Factor the expression:
\(5\left(2x+3\right)\left(x^{2}+2\right)\)
Factor the expression \( -3 x^{6}-12 x^{3 \).
Factor the expression by following steps:
- step0: Factor:
\(-3x^{6}-12x^{3}\)
- step1: Rewrite the expression:
\(-3x^{3}\times x^{3}-3x^{3}\times 4\)
- step2: Factor the expression:
\(-3x^{3}\left(x^{3}+4\right)\)
Here are the factorizations for the given polynomials, along with the steps involved in each case:
1. **Factor \( 5x^{3} - 6x^{2} - 5x + 6 \)**:
- Group the terms: \( (5x^{3} - 6x^{2}) + (-5x + 6) \)
- Factor out the GCF from each group:
- From the first group: \( x^{2}(5x - 6) \)
- From the second group: \( -1(5x - 6) \)
- Combine: \( (5x - 6)(x^{2} - 1) \)
- Factor \( x^{2} - 1 \) further: \( (x - 1)(x + 1) \)
- Final factorization: **\( (x - 1)(x + 1)(5x - 6) \)**
2. **Factor \( 6x^{3} + 12x^{2} + 6x \)**:
- Factor out the GCF: \( 6x(x^{2} + 2x + 1) \)
- Recognize \( x^{2} + 2x + 1 \) as a perfect square: \( (x + 1)^{2} \)
- Final factorization: **\( 6x(x + 1)^{2} \)**
3. **Factor \( x^{6} - x^{5} + x^{4} - x^{3} \)**:
- Group the terms: \( (x^{6} - x^{5}) + (x^{4} - x^{3}) \)
- Factor out the GCF from each group:
- From the first group: \( x^{5}(x - 1) \)
- From the second group: \( x^{3}(x - 1) \)
- Combine: \( (x - 1)(x^{5} + x^{3}) \)
- Factor \( x^{5} + x^{3} \): \( x^{3}(x^{2} + 1) \)
- Final factorization: **\( x^{3}(x - 1)(x^{2} + 1) \)**
4. **Factor \( 10x^{3} + 15x^{2} + 20x + 30 \)**:
- Group the terms: \( (10x^{3} + 15x^{2}) + (20x + 30) \)
- Factor out the GCF from each group:
- From the first group: \( 5x^{2}(2x + 3) \)
- From the second group: \( 10(2x + 3) \)
- Combine: \( (2x + 3)(5x^{2} + 10) \)
- Factor \( 5x^{2} + 10 \): \( 5(x^{2} + 2) \)
- Final factorization: **\( 5(2x + 3)(x^{2} + 2) \)**
5. **Factor \( 100x^{7} - 25x^{5} \)**:
- Factor out the GCF: \( 25x^{5}(4x^{2} - 1) \)
- Recognize \( 4x^{2} - 1 \) as a difference of squares: \( (2x - 1)(2x + 1) \)
- Final factorization: **\( 25x^{5}(2x - 1)(2x + 1) \)**
6. **Factor \( 3x^{2} - 27 \)**:
- Recognize \( 3 \) as a common factor: \( 3(x^{2} - 9) \)
- Factor \( x^{2} - 9 \) as a difference of squares: \( (x - 3)(x + 3) \)
- Final factorization: **\( 3(x - 3)(x + 3) \)**
7. **Factor \( 3x^{3} + 3x^{2} + 9x + 9 \)**:
- Group the terms: \( (3x^{3} + 3x^{2}) + (9x + 9) \)
- Factor out the GCF from each group:
- From the first group: \( 3x^{2}(x + 1) \)
- From the second group: \( 9(x + 1) \)
- Combine: \( (x + 1)(3x^{2} + 9) \)
- Factor \( 3x^{2} + 9 \): \( 3(x^{2} + 3) \)
- Final factorization: **\( 3(x + 1)(x^{2} + 3) \)**
8. **Factor \( -3x^{6} + 24x^{3} \)**:
- Factor out the GCF: \( -3x^{3}(x^{3} - 8) \)
- Recognize \( x^{3} - 8 \) as a difference of cubes: \( (x - 2)(x^{2} + 2x + 4) \)
- Final factorization: **\( -3x^{3}(x - 2)(x^{2} + 2x + 4) \)**
9. **Factor \( -3x^{6} - 12x^{3} \)**:
- Factor out the GCF: \( -3x^{3}(x^{3} + 4) \)
- Final factorization: **\( -3x^{3}(x^{3} + 4) \)**
10. **Factor \( 30x^{3} + 25x^{2} + 42x + 35 \)**:
- Group the terms: \( (30x^{3} + 25x^{2}) + (42x + 35) \)
- Factor out the GCF from each group:
- From the first group: \( 5x^{2}(6x + 5) \)
- From the second group: \( 7(6x + 5) \)
- Combine: \( (6x + 5)(5x^{2} + 7) \)
- Final factorization: **\( (6x + 5)(5x^{2} + 7) \)**
These are the complete factorizations for the given polynomials.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución