Pregunta
upstudy study bank question image url

Factor the following polynomials by GCF and/or grouping. Show ALL work! \( \begin{array}{ll}\text { 1.) } 5 x^{3}-6 x^{2}-5 x+6 & \text { 16.) } 3 x^{2}-27 \\ \text { 2.) } 6 x^{3}+12 x^{2}+6 x & \text { 17.) } 3 x^{3}+3 x^{2}+9 x+9 \\ \text { 3.) } x^{6}-x^{5}+x^{4}-x^{3} & \text { 18.) }-3 x^{6}+24 x^{3} \\ \text { 4.) } 10 x^{3}+15 x^{2}+20 x+30 & \text { 19.) }-3 x^{6}-12 x^{3} \\ \text { 5.) } 100 x^{7}-25 x^{5} & \text { 20.) } 30 x^{3}+25 x^{2}+42 x+35\end{array} \)

Ask by Montgomery Ward. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the factorizations for the polynomials: 1. \( 5x^{3} - 6x^{2} - 5x + 6 = (x - 1)(x + 1)(5x - 6) \) 2. \( 6x^{3} + 12x^{2} + 6x = 6x(x + 1)^{2} \) 3. \( x^{6} - x^{5} + x^{4} - x^{3} = x^{3}(x - 1)(x^{2} + 1) \) 4. \( 10x^{3} + 15x^{2} + 20x + 30 = 5(2x + 3)(x^{2} + 2) \) 5. \( 100x^{7} - 25x^{5} = 25x^{5}(2x - 1)(2x + 1) \) 6. \( 3x^{2} - 27 = 3(x - 3)(x + 3) \) 7. \( 3x^{3} + 3x^{2} + 9x + 9 = 3(x + 1)(x^{2} + 3) \) 8. \( -3x^{6} + 24x^{3} = -3x^{3}(x - 2)(x^{2} + 2x + 4) \) 9. \( -3x^{6} - 12x^{3} = -3x^{3}(x^{3} + 4) \) 10. \( 30x^{3} + 25x^{2} + 42x + 35 = (6x + 5)(5x^{2} + 7) \)

Solución

Factor the expression by following steps: - step0: Factor: \(6x^{3}+12x^{2}+6x\) - step1: Rewrite the expression: \(6x\times x^{2}+6x\times 2x+6x\) - step2: Factor the expression: \(6x\left(x^{2}+2x+1\right)\) - step3: Factor the expression: \(6x\left(x+1\right)^{2}\) Factor the expression \( 30 x^{3}+25 x^{2}+42 x+35 \). Factor the expression by following steps: - step0: Factor: \(30x^{3}+25x^{2}+42x+35\) - step1: Calculate: \(30x^{3}+42x+25x^{2}+35\) - step2: Rewrite the expression: \(6x\times 5x^{2}+6x\times 7+5\times 5x^{2}+5\times 7\) - step3: Factor the expression: \(6x\left(5x^{2}+7\right)+5\left(5x^{2}+7\right)\) - step4: Factor the expression: \(\left(6x+5\right)\left(5x^{2}+7\right)\) Factor the expression \( 100 x^{7}-25 x^{5} \). Factor the expression by following steps: - step0: Factor: \(100x^{7}-25x^{5}\) - step1: Factor the expression: \(25x^{5}\left(4x^{2}-1\right)\) - step2: Factor the expression: \(25x^{5}\left(2x-1\right)\left(2x+1\right)\) Factor the expression \( 3 x^{2}-27 \). Factor the expression by following steps: - step0: Factor: \(3x^{2}-27\) - step1: Factor the expression: \(3\left(x^{2}-9\right)\) - step2: Factor the expression: \(3\left(x-3\right)\left(x+3\right)\) Factor the expression \( 3 x^{3}+3 x^{2}+9 x+9 \). Factor the expression by following steps: - step0: Factor: \(3x^{3}+3x^{2}+9x+9\) - step1: Evaluate: \(3x^{3}+9x+3x^{2}+9\) - step2: Rewrite the expression: \(3x^{3}+3\times 3x+3x^{2}+3\times 3\) - step3: Factor the expression: \(3\left(x^{3}+3x+x^{2}+3\right)\) - step4: Factor the expression: \(3\left(x+1\right)\left(x^{2}+3\right)\) Factor the expression \( -3 x^{6}+24 x^{3 \). Factor the expression by following steps: - step0: Factor: \(-3x^{6}+24x^{3}\) - step1: Factor the expression: \(3x^{3}\left(-x^{3}+8\right)\) - step2: Factor the expression: \(3x^{3}\left(2-x\right)\left(4+2x+x^{2}\right)\) Factor the expression \( 5 x^{3}-6 x^{2}-5 x+6 \). Factor the expression by following steps: - step0: Factor: \(5x^{3}-6x^{2}-5x+6\) - step1: Rewrite the expression: \(x^{2}\times 5x-x^{2}\times 6-5x+6\) - step2: Factor the expression: \(x^{2}\left(5x-6\right)-\left(5x-6\right)\) - step3: Factor the expression: \(\left(x^{2}-1\right)\left(5x-6\right)\) - step4: Factor the expression: \(\left(x-1\right)\left(x+1\right)\left(5x-6\right)\) Factor the expression \( x^{6}-x^{5}+x^{4}-x^{3 \). Factor the expression by following steps: - step0: Factor: \(x^{6}-x^{5}+x^{4}-x^{3}\) - step1: Evaluate: \(x^{6}+x^{4}-x^{5}-x^{3}\) - step2: Rewrite the expression: \(x^{3}\times x^{3}+x^{3}\times x-x^{3}\times x^{2}-x^{3}\) - step3: Factor the expression: \(x^{3}\left(x^{3}+x-x^{2}-1\right)\) - step4: Factor the expression: \(x^{3}\left(x-1\right)\left(x^{2}+1\right)\) Factor the expression \( 10 x^{3}+15 x^{2}+20 x+30 \). Factor the expression by following steps: - step0: Factor: \(10x^{3}+15x^{2}+20x+30\) - step1: Evaluate: \(10x^{3}+20x+15x^{2}+30\) - step2: Rewrite the expression: \(5\times 2x^{3}+5\times 4x+5\times 3x^{2}+5\times 6\) - step3: Factor the expression: \(5\left(2x^{3}+4x+3x^{2}+6\right)\) - step4: Factor the expression: \(5\left(2x+3\right)\left(x^{2}+2\right)\) Factor the expression \( -3 x^{6}-12 x^{3 \). Factor the expression by following steps: - step0: Factor: \(-3x^{6}-12x^{3}\) - step1: Rewrite the expression: \(-3x^{3}\times x^{3}-3x^{3}\times 4\) - step2: Factor the expression: \(-3x^{3}\left(x^{3}+4\right)\) Here are the factorizations for the given polynomials, along with the steps involved in each case: 1. **Factor \( 5x^{3} - 6x^{2} - 5x + 6 \)**: - Group the terms: \( (5x^{3} - 6x^{2}) + (-5x + 6) \) - Factor out the GCF from each group: - From the first group: \( x^{2}(5x - 6) \) - From the second group: \( -1(5x - 6) \) - Combine: \( (5x - 6)(x^{2} - 1) \) - Factor \( x^{2} - 1 \) further: \( (x - 1)(x + 1) \) - Final factorization: **\( (x - 1)(x + 1)(5x - 6) \)** 2. **Factor \( 6x^{3} + 12x^{2} + 6x \)**: - Factor out the GCF: \( 6x(x^{2} + 2x + 1) \) - Recognize \( x^{2} + 2x + 1 \) as a perfect square: \( (x + 1)^{2} \) - Final factorization: **\( 6x(x + 1)^{2} \)** 3. **Factor \( x^{6} - x^{5} + x^{4} - x^{3} \)**: - Group the terms: \( (x^{6} - x^{5}) + (x^{4} - x^{3}) \) - Factor out the GCF from each group: - From the first group: \( x^{5}(x - 1) \) - From the second group: \( x^{3}(x - 1) \) - Combine: \( (x - 1)(x^{5} + x^{3}) \) - Factor \( x^{5} + x^{3} \): \( x^{3}(x^{2} + 1) \) - Final factorization: **\( x^{3}(x - 1)(x^{2} + 1) \)** 4. **Factor \( 10x^{3} + 15x^{2} + 20x + 30 \)**: - Group the terms: \( (10x^{3} + 15x^{2}) + (20x + 30) \) - Factor out the GCF from each group: - From the first group: \( 5x^{2}(2x + 3) \) - From the second group: \( 10(2x + 3) \) - Combine: \( (2x + 3)(5x^{2} + 10) \) - Factor \( 5x^{2} + 10 \): \( 5(x^{2} + 2) \) - Final factorization: **\( 5(2x + 3)(x^{2} + 2) \)** 5. **Factor \( 100x^{7} - 25x^{5} \)**: - Factor out the GCF: \( 25x^{5}(4x^{2} - 1) \) - Recognize \( 4x^{2} - 1 \) as a difference of squares: \( (2x - 1)(2x + 1) \) - Final factorization: **\( 25x^{5}(2x - 1)(2x + 1) \)** 6. **Factor \( 3x^{2} - 27 \)**: - Recognize \( 3 \) as a common factor: \( 3(x^{2} - 9) \) - Factor \( x^{2} - 9 \) as a difference of squares: \( (x - 3)(x + 3) \) - Final factorization: **\( 3(x - 3)(x + 3) \)** 7. **Factor \( 3x^{3} + 3x^{2} + 9x + 9 \)**: - Group the terms: \( (3x^{3} + 3x^{2}) + (9x + 9) \) - Factor out the GCF from each group: - From the first group: \( 3x^{2}(x + 1) \) - From the second group: \( 9(x + 1) \) - Combine: \( (x + 1)(3x^{2} + 9) \) - Factor \( 3x^{2} + 9 \): \( 3(x^{2} + 3) \) - Final factorization: **\( 3(x + 1)(x^{2} + 3) \)** 8. **Factor \( -3x^{6} + 24x^{3} \)**: - Factor out the GCF: \( -3x^{3}(x^{3} - 8) \) - Recognize \( x^{3} - 8 \) as a difference of cubes: \( (x - 2)(x^{2} + 2x + 4) \) - Final factorization: **\( -3x^{3}(x - 2)(x^{2} + 2x + 4) \)** 9. **Factor \( -3x^{6} - 12x^{3} \)**: - Factor out the GCF: \( -3x^{3}(x^{3} + 4) \) - Final factorization: **\( -3x^{3}(x^{3} + 4) \)** 10. **Factor \( 30x^{3} + 25x^{2} + 42x + 35 \)**: - Group the terms: \( (30x^{3} + 25x^{2}) + (42x + 35) \) - Factor out the GCF from each group: - From the first group: \( 5x^{2}(6x + 5) \) - From the second group: \( 7(6x + 5) \) - Combine: \( (6x + 5)(5x^{2} + 7) \) - Final factorization: **\( (6x + 5)(5x^{2} + 7) \)** These are the complete factorizations for the given polynomials.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Sure! Let’s factor these polynomials step by step. **1.)** \( 5x^3 - 6x^2 - 5x + 6 \) Step 1: Group the terms: \( (5x^3 - 6x^2) + (-5x + 6) \) Step 2: Factor out the GCF from each group: \( x^2(5x - 6) - 1(5x - 6) \) Step 3: Factor by grouping: \( (5x - 6)(x^2 - 1) \) Step 4: Factor \(x^2 - 1\) further: \( (5x - 6)(x - 1)(x + 1) \) Thus, \( 5x^3 - 6x^2 - 5x + 6 = (5x - 6)(x - 1)(x + 1) \). **2.)** \( 6x^3 + 12x^2 + 6x \) Step 1: Factor out the GCF, which is \(6x\): \( 6x(x^2 + 2x + 1) \) Step 2: Notice that \(x^2 + 2x + 1\) is a perfect square: \( 6x(x + 1)^2 \) Thus, \( 6x^3 + 12x^2 + 6x = 6x(x + 1)^2 \). **3.)** \( x^6 - x^5 + x^4 - x^3 \) Step 1: Group the terms: \( (x^6 - x^5) + (x^4 - x^3) \) Step 2: Factor out the GCF from each group, which is \(x^5\) and \(x^3\): \( x^5(x - 1) + x^3(x - 1) \) Step 3: Factor by grouping: \( (x - 1)(x^5 + x^3) \) Step 4: Factor out \(x^3\) from \(x^5 + x^3\): \( (x - 1)x^3(x^2 + 1) \) Thus, \( x^6 - x^5 + x^4 - x^3 = (x - 1)x^3(x^2 + 1) \). **4.)** \( 10x^3 + 15x^2 + 20x + 30 \) Step 1: Group the terms: \( (10x^3 + 15x^2) + (20x + 30) \) Step 2: Factor out the GCF from each group: \( 5x^2(2x + 3) + 10(2x + 3) \) Step 3: Factor by grouping: \( (2x + 3)(5x^2 + 10) \) Step 4: Factor \(5x^2 + 10\): \( (2x + 3)(5(x^2 + 2)) \) Thus, \( 10x^3 + 15x^2 + 20x + 30 = (2x + 3)(5(x^2 + 2)) \). **5.)** \( 100x^7 - 25x^5 \) Step 1: Factor out the GCF, which is \(25x^5\): \( 25x^5(4x^2 - 1) \) Step 2: Recognize \(4x^2 - 1\) is a difference of squares: \( 25x^5(2x - 1)(2x + 1) \) Thus, \( 100x^7 - 25x^5 = 25x^5(2x - 1)(2x + 1) \). **6.)** \( 3x^2 - 27 \) Step 1: Factor out the GCF, which is \(3\): \( 3(x^2 - 9) \) Step 2: Recognize \(x^2 - 9\) is a difference of squares: \( 3(x - 3)(x + 3) \) Thus, \( 3x^2 - 27 = 3(x - 3)(x + 3) \). **7.)** \( 3x^3 + 3x^2 +

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad