Question

PREPARATION SHEET, MIDTERM 1 1. Write the equation of a line through each indicated point with the indicated slope. Write the final answer in the form \( y=m x+b \). (A) \( m=-\frac{2}{3} ;(-3,2) \) (B) \( m=0 ;(3,3) \)

Ask by Deleon King. in Kazakhstan
Feb 14,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

A) \( y = -\frac{2}{3}x \) B) \( y = 3 \)

Solution

Рассмотрим каждую задачу по отдельности. A) Дано: угол наклона m = –2/3 и точка (–3, 2). Используем уравнение прямой в точке:   y – y₁ = m (x – x₁). Подставляем значения:   y – 2 = –(2/3)(x – (–3)) = –(2/3)(x + 3). Раскрываем скобки:   y – 2 = –(2/3)x – 2. Прибавляем 2 к обеим частям:   y = –(2/3)x – 2 + 2,   y = –(2/3)x. Итак, уравнение прямой в форме y = mx + b:   y = –(2/3)x. B) Дано: угол наклона m = 0 и точка (3, 3). Прямая с угловым коэффициентом 0 — горизонтальная прямая. Ее уравнение:   y = b. Подставляем координату точки:   3 = b,   b = 3. Таким образом, уравнение прямой:   y = 3. Ответ: A) y = –(2/3)x B) y = 3.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To find the equation of a line in the form \( y = mx + b \), you can use the point-slope form of the equation and then convert it to the desired format. For part (A), start with the point \((-3, 2)\) and slope \( m = -\frac{2}{3}\). The point-slope form is \( y - y_1 = m(x - x_1) \), which gives us \( y - 2 = -\frac{2}{3}(x + 3) \). Expanding this leads to the final equation \( y = -\frac{2}{3}x - 2 \). For part (B), with a slope of \( m = 0 \), the line is horizontal. This means \( y \) will be the same value as the y-coordinate of the point \((3, 3)\). Therefore, the final equation is simply \( y = 3 \).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy