\( \left. \begin{array} { l } { x = \sqrt { 3 } - 2 } \\ { y = \sqrt { 3 } - 1 } \end{array} \right\} \Rightarrow \sqrt[ 4 ] { x ^ { 4 } } + \sqrt { ( x - y ) ^ { 2 } } = ? \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
Let's first simplify the expressions \(x\) and \(y\): 1. \(x = \sqrt{3} - 2\) 2. \(y = \sqrt{3} - 1\) Now we need to calculate: \(\sqrt[4]{x^4} + \sqrt{(x - y)^2}\) Starting with \(\sqrt[4]{x^4}\): \[ \sqrt[4]{x^4} = |x| \] Now calculate \(|x|\): Since \(x = \sqrt{3} - 2 \) and \(\sqrt{3} \approx 1.732\), we find: \[ \sqrt{3} - 2 \approx 1.732 - 2 = -0.268 \] Thus, \(|x| = -x = 2 - \sqrt{3}\). Next, we calculate \(x - y\): \[ x - y = (\sqrt{3} - 2) - (\sqrt{3} - 1) = -2 + 1 = -1 \] Then, we need \(\sqrt{(x - y)^2}\): \[ \sqrt{(x - y)^2} = |x - y| = |-1| = 1 \] Putting it all together: \[ \sqrt[4]{x^4} + \sqrt{(x - y)^2} = |x| + |x - y| = (2 - \sqrt{3}) + 1 = 3 - \sqrt{3} \] Therefore, the final answer is: \[ 3 - \sqrt{3} \]