Answer
**5.3**
Calculate:
\[
\sin(-200^\circ) \cdot \cos 310^\circ + \tan(-135^\circ) \cdot \cos 380^\circ \cdot \sin 230^\circ
\]
**Steps:**
1. Simplify each trigonometric function:
- \(\sin(-200^\circ) = -\sin(20^\circ)\)
- \(\cos 310^\circ = \cos(50^\circ)\)
- \(\tan(-135^\circ) = 1\)
- \(\cos 380^\circ = \cos(20^\circ)\)
- \(\sin 230^\circ = -\sin(50^\circ)\)
2. Combine the terms:
\[
-\sin(20^\circ) \cdot \cos(50^\circ) + 1 \cdot \cos(20^\circ) \cdot (-\sin(50^\circ)) = -\sin(20^\circ)\cos(50^\circ) - \cos(20^\circ)\sin(50^\circ)
\]
3. Use the sine difference identity:
\[
-\sin(20^\circ)\cos(50^\circ) - \cos(20^\circ)\sin(50^\circ) = -\sin(70^\circ) = -\frac{1}{2}
\]
**Answer:** \(-\frac{1}{2}\)
---
**5.4**
**Identity to Prove:**
\[
\sin 2\theta + \cos(2\theta - 90^\circ) = 4\sin\theta\cos\theta
\]
**Proof:**
1. Use the co-function identity:
\[
\cos(2\theta - 90^\circ) = \sin 2\theta
\]
2. Substitute back into the left-hand side:
\[
\sin 2\theta + \sin 2\theta = 2\sin 2\theta
\]
3. Express \(\sin 2\theta\) using the double-angle formula:
\[
2\sin 2\theta = 2 \cdot 2\sin\theta\cos\theta = 4\sin\theta\cos\theta
\]
**Conclusion:** The identity is proven.
**Answer:** The identity holds true.
Solution
**5.3**
We want to evaluate
\[
\sin\left(-200^\circ\right) \cdot \cos 310^\circ + \tan\left(-135^\circ\right) \cdot \cos 380^\circ \cdot \sin 230^\circ.
\]
1. **Simplify the first term \(\sin(-200^\circ) \cos 310^\circ\):**
- Use the property \(\sin(-\theta)=-\sin\theta\):
\[
\sin(-200^\circ)=-\sin(200^\circ).
\]
- Express \(200^\circ\) as \(180^\circ+20^\circ\) so that
\[
\sin(200^\circ)=\sin(180^\circ+20^\circ)=-\sin(20^\circ).
\]
Thus,
\[
\sin(-200^\circ)=-\big[-\sin(20^\circ)\big]=\sin(20^\circ).
\]
- For \(\cos 310^\circ\): Express \(310^\circ\) as \(360^\circ-50^\circ\) and use the fact that cosine is even:
\[
\cos 310^\circ=\cos(50^\circ).
\]
- Therefore, the first term becomes:
\[
\sin(20^\circ) \cos(50^\circ).
\]
2. **Simplify the second term \(\tan(-135^\circ)\cos 380^\circ\sin 230^\circ\):**
- Use \(\tan(-\theta)=-\tan\theta\):
\[
\tan(-135^\circ)=-\tan(135^\circ).
\]
- Notice that \(135^\circ=180^\circ-45^\circ\), and using the identity \(\tan(180^\circ-\theta)=-\tan\theta\):
\[
\tan(135^\circ)=-\tan(45^\circ)=-1.
\]
Thus,
\[
\tan(-135^\circ)=-(-1)=1.
\]
- Next, reduce \(\cos380^\circ\): since \(380^\circ=360^\circ+20^\circ\), we have
\[
\cos380^\circ=\cos20^\circ.
\]
- For \(\sin230^\circ\): write \(230^\circ=180^\circ+50^\circ\), and use the property \(\sin(180^\circ+\theta)=-\sin\theta\):
\[
\sin230^\circ=-\sin50^\circ.
\]
- Therefore, the second term becomes:
\[
1\cdot \cos20^\circ\cdot \left(-\sin50^\circ\right)=-\cos20^\circ\sin50^\circ.
\]
3. **Combine the two results:**
\[
\sin(20^\circ)\cos(50^\circ)-\cos(20^\circ)\sin(50^\circ).
\]
Recognize the sine difference formula:
\[
\sin A\cos B-\cos A\sin B=\sin(A-B).
\]
Let \(A=20^\circ\) and \(B=50^\circ\), then
\[
\sin(20^\circ)\cos(50^\circ)-\cos(20^\circ)\sin(50^\circ)=\sin(20^\circ-50^\circ)=\sin(-30^\circ).
\]
And since \(\sin(-\theta)=-\sin\theta\):
\[
\sin(-30^\circ)=-\sin30^\circ=-\frac{1}{2}.
\]
Thus, the value of the expression is
\[
-\frac{1}{2}.
\]
---
**5.4**
We need to prove the identity
\[
\sin 2\theta+\cos\left(2\theta-90^\circ\right)=4\sin\theta\cos\theta.
\]
1. **Express \(\cos(2\theta-90^\circ)\) in terms of sine:**
Recall the co-function identity:
\[
\cos\left(x-90^\circ\right)=\sin x.
\]
Setting \(x=2\theta\) gives:
\[
\cos(2\theta-90^\circ)=\sin2\theta.
\]
2. **Substitute back into the left-hand side of the identity:**
\[
\sin2\theta+\cos(2\theta-90^\circ)=\sin2\theta+\sin2\theta=2\sin2\theta.
\]
3. **Express \(\sin2\theta\) in terms of \(\sin\theta\) and \(\cos\theta\):**
Using the double-angle formula:
\[
\sin2\theta=2\sin\theta\cos\theta.
\]
Then,
\[
2\sin2\theta=2\cdot\big(2\sin\theta\cos\theta\big)=4\sin\theta\cos\theta.
\]
Thus, we have shown that
\[
\sin 2\theta+\cos(2\theta-90^\circ)=4\sin\theta\cos\theta,
\]
which completes the proof.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution