Answer
The simplified expression is:
\[
\frac{60 \operatorname{cosex} x^2 - 2x^2 + 3x}{6x - 9}
\]
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\frac{5cosex}{\left(\frac{\left(2x-3\right)}{4x}\right)}-\left(\frac{\left(3x-2x\right)}{3}\right)\)
- step1: Remove the parentheses:
\(\frac{5cosex}{\frac{2x-3}{4x}}-\left(\frac{3x-2x}{3}\right)\)
- step2: Subtract the terms:
\(\frac{5cosex}{\frac{2x-3}{4x}}-\left(\frac{x}{3}\right)\)
- step3: Remove the parentheses:
\(\frac{5cosex}{\frac{2x-3}{4x}}-\frac{x}{3}\)
- step4: Multiply the numbers:
\(\frac{5ecosx}{\frac{2x-3}{4x}}-\frac{x}{3}\)
- step5: Divide the terms:
\(\frac{20ecosx^{2}}{2x-3}-\frac{x}{3}\)
- step6: Reduce fractions to a common denominator:
\(\frac{20ecosx^{2}\times 3}{\left(2x-3\right)\times 3}-\frac{x\left(2x-3\right)}{3\left(2x-3\right)}\)
- step7: Reorder the terms:
\(\frac{20ecosx^{2}\times 3}{3\left(2x-3\right)}-\frac{x\left(2x-3\right)}{3\left(2x-3\right)}\)
- step8: Transform the expression:
\(\frac{20ecosx^{2}\times 3-x\left(2x-3\right)}{3\left(2x-3\right)}\)
- step9: Multiply the terms:
\(\frac{60ecosx^{2}-x\left(2x-3\right)}{3\left(2x-3\right)}\)
- step10: Multiply the terms:
\(\frac{60ecosx^{2}-\left(2x^{2}-3x\right)}{3\left(2x-3\right)}\)
- step11: Remove the parentheses:
\(\frac{60ecosx^{2}-2x^{2}+3x}{3\left(2x-3\right)}\)
- step12: Simplify:
\(\frac{60ecosx^{2}-2x^{2}+3x}{6x-9}\)
Let's simplify the expression step by step:
1. **Original Expression**:
\[
\frac{5 \operatorname{cosex}}{\frac{(2x - 3)}{4x}} - \frac{(3x - 2x)}{3}
\]
2. **Simplifying the First Term**:
The first term can be rewritten as:
\[
\frac{5 \operatorname{cosex}}{\frac{(2x - 3)}{4x}} = 5 \operatorname{cosex} \cdot \frac{4x}{(2x - 3)} = \frac{20x \operatorname{cosex}}{(2x - 3)}
\]
3. **Simplifying the Second Term**:
The second term simplifies to:
\[
\frac{(3x - 2x)}{3} = \frac{x}{3}
\]
4. **Combining the Terms**:
Now we combine both terms:
\[
\frac{20x \operatorname{cosex}}{(2x - 3)} - \frac{x}{3}
\]
5. **Finding a Common Denominator**:
The common denominator for the two fractions is \(3(2x - 3)\). Thus, we rewrite the expression:
\[
\frac{20x \operatorname{cosex} \cdot 3}{3(2x - 3)} - \frac{x(2x - 3)}{3(2x - 3)}
\]
6. **Combining the Fractions**:
This gives us:
\[
\frac{60x \operatorname{cosex} - (2x^2 - 3x)}{3(2x - 3)}
\]
7. **Final Simplified Expression**:
The final simplified expression is:
\[
\frac{60x \operatorname{cosex} - 2x^2 + 3x}{3(2x - 3)}
\]
Thus, the simplified result is:
\[
\frac{60 \operatorname{cosex} x^2 - 2x^2 + 3x}{6x - 9}
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution