Question
upstudy study bank question image url

\( \frac { 5 \operatorname { cosex } } { \frac { ( 2 x - 3 ) } { 4 x } } - \frac { ( 3 x - 2 x } { 3 } \)

Ask by Ward Sanders. in South Africa
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The simplified expression is: \[ \frac{60 \operatorname{cosex} x^2 - 2x^2 + 3x}{6x - 9} \]

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{5cosex}{\left(\frac{\left(2x-3\right)}{4x}\right)}-\left(\frac{\left(3x-2x\right)}{3}\right)\) - step1: Remove the parentheses: \(\frac{5cosex}{\frac{2x-3}{4x}}-\left(\frac{3x-2x}{3}\right)\) - step2: Subtract the terms: \(\frac{5cosex}{\frac{2x-3}{4x}}-\left(\frac{x}{3}\right)\) - step3: Remove the parentheses: \(\frac{5cosex}{\frac{2x-3}{4x}}-\frac{x}{3}\) - step4: Multiply the numbers: \(\frac{5ecosx}{\frac{2x-3}{4x}}-\frac{x}{3}\) - step5: Divide the terms: \(\frac{20ecosx^{2}}{2x-3}-\frac{x}{3}\) - step6: Reduce fractions to a common denominator: \(\frac{20ecosx^{2}\times 3}{\left(2x-3\right)\times 3}-\frac{x\left(2x-3\right)}{3\left(2x-3\right)}\) - step7: Reorder the terms: \(\frac{20ecosx^{2}\times 3}{3\left(2x-3\right)}-\frac{x\left(2x-3\right)}{3\left(2x-3\right)}\) - step8: Transform the expression: \(\frac{20ecosx^{2}\times 3-x\left(2x-3\right)}{3\left(2x-3\right)}\) - step9: Multiply the terms: \(\frac{60ecosx^{2}-x\left(2x-3\right)}{3\left(2x-3\right)}\) - step10: Multiply the terms: \(\frac{60ecosx^{2}-\left(2x^{2}-3x\right)}{3\left(2x-3\right)}\) - step11: Remove the parentheses: \(\frac{60ecosx^{2}-2x^{2}+3x}{3\left(2x-3\right)}\) - step12: Simplify: \(\frac{60ecosx^{2}-2x^{2}+3x}{6x-9}\) Let's simplify the expression step by step: 1. **Original Expression**: \[ \frac{5 \operatorname{cosex}}{\frac{(2x - 3)}{4x}} - \frac{(3x - 2x)}{3} \] 2. **Simplifying the First Term**: The first term can be rewritten as: \[ \frac{5 \operatorname{cosex}}{\frac{(2x - 3)}{4x}} = 5 \operatorname{cosex} \cdot \frac{4x}{(2x - 3)} = \frac{20x \operatorname{cosex}}{(2x - 3)} \] 3. **Simplifying the Second Term**: The second term simplifies to: \[ \frac{(3x - 2x)}{3} = \frac{x}{3} \] 4. **Combining the Terms**: Now we combine both terms: \[ \frac{20x \operatorname{cosex}}{(2x - 3)} - \frac{x}{3} \] 5. **Finding a Common Denominator**: The common denominator for the two fractions is \(3(2x - 3)\). Thus, we rewrite the expression: \[ \frac{20x \operatorname{cosex} \cdot 3}{3(2x - 3)} - \frac{x(2x - 3)}{3(2x - 3)} \] 6. **Combining the Fractions**: This gives us: \[ \frac{60x \operatorname{cosex} - (2x^2 - 3x)}{3(2x - 3)} \] 7. **Final Simplified Expression**: The final simplified expression is: \[ \frac{60x \operatorname{cosex} - 2x^2 + 3x}{3(2x - 3)} \] Thus, the simplified result is: \[ \frac{60 \operatorname{cosex} x^2 - 2x^2 + 3x}{6x - 9} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To simplify the expression \( \frac { 5 \operatorname { cosex } } { \frac { ( 2 x - 3 ) } { 4 x } } - \frac { ( 3 x - 2 x } { 3 } \), we’ll break it down step by step, turning it into a fun algebra exercise! First, let’s focus on \( \frac { 5 \operatorname { cosex } } { \frac { ( 2 x - 3 ) } { 4 x } } \). This can be rewritten as \( 5 \operatorname { cosex } \cdot \frac{4x}{2x - 3} \), which gives us \( \frac{20x \operatorname { cosex}}{2x - 3} \). Now, for the second part, \( \frac { ( 3 x - 2 x } { 3 } \) simplifies to \( \frac{x}{3} \). Putting it all together, the expression now reads \( \frac{20x \operatorname { cosex}}{2x - 3} - \frac{x}{3} \). Finding a common denominator and combining these fractions will yield the final simplified result. Have fun calculating!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy