Question
upstudy study bank question image url

*) If \( \sin \theta=\frac{-6 k}{k^{2}+9}, 0
Ask by Ingram Bernard. in South Africa
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\[ \cos \theta = -\frac{\sqrt{k^4 - 18k^2 + 81}}{k^2 + 9} \] \[ \tan \theta + \frac{1}{\cos \theta} = \frac{6k - k^2 - 9}{\sqrt{k^4 - 18k^2 + 81}} \]

Solution

To solve the problem, we start with the given condition: \[ \sin \theta = \frac{-6k}{k^2 + 9} \] We know that \(\theta\) is in the interval \((90^\circ, 270^\circ)\), which means \(\sin \theta\) is negative and \(\cos \theta\) will also be negative in this range. ### Step 1: Determine \(\cos \theta\) Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] We can express \(\cos^2 \theta\) in terms of \(\sin \theta\): \[ \cos^2 \theta = 1 - \sin^2 \theta \] Substituting \(\sin \theta\): \[ \cos^2 \theta = 1 - \left(\frac{-6k}{k^2 + 9}\right)^2 \] Calculating \(\sin^2 \theta\): \[ \sin^2 \theta = \frac{36k^2}{(k^2 + 9)^2} \] Now substituting this into the equation for \(\cos^2 \theta\): \[ \cos^2 \theta = 1 - \frac{36k^2}{(k^2 + 9)^2} \] To combine these terms, we need a common denominator: \[ \cos^2 \theta = \frac{(k^2 + 9)^2 - 36k^2}{(k^2 + 9)^2} \] Now we simplify the numerator: \[ (k^2 + 9)^2 - 36k^2 = k^4 + 18k^2 + 81 - 36k^2 = k^4 - 18k^2 + 81 \] Thus, we have: \[ \cos^2 \theta = \frac{k^4 - 18k^2 + 81}{(k^2 + 9)^2} \] Since \(\theta\) is in the second quadrant, \(\cos \theta\) is negative: \[ \cos \theta = -\sqrt{\frac{k^4 - 18k^2 + 81}{(k^2 + 9)^2}} = -\frac{\sqrt{k^4 - 18k^2 + 81}}{k^2 + 9} \] ### Step 2: Determine \(\tan \theta + \frac{1}{\cos \theta}\) We know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] Substituting the expressions we found: \[ \tan \theta = \frac{\frac{-6k}{k^2 + 9}}{-\frac{\sqrt{k^4 - 18k^2 + 81}}{k^2 + 9}} = \frac{6k}{\sqrt{k^4 - 18k^2 + 81}} \] Now we can find \(\tan \theta + \frac{1}{\cos \theta}\): \[ \frac{1}{\cos \theta} = -\frac{k^2 + 9}{\sqrt{k^4 - 18k^2 + 81}} \] Thus: \[ \tan \theta + \frac{1}{\cos \theta} = \frac{6k}{\sqrt{k^4 - 18k^2 + 81}} - \frac{k^2 + 9}{\sqrt{k^4 - 18k^2 + 81}} \] Combining these fractions: \[ \tan \theta + \frac{1}{\cos \theta} = \frac{6k - (k^2 + 9)}{\sqrt{k^4 - 18k^2 + 81}} = \frac{6k - k^2 - 9}{\sqrt{k^4 - 18k^2 + 81}} \] ### Final Results 1. \(\cos \theta = -\frac{\sqrt{k^4 - 18k^2 + 81}}{k^2 + 9}\) 2. \(\tan \theta + \frac{1}{\cos \theta} = \frac{6k - k^2 - 9}{\sqrt{k^4 - 18k^2 + 81}}\)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Let's begin with some trigonometric identities. Since \( \theta \) is in the second quadrant (between \( 90^\circ \) and \( 270^\circ \)), we know that \( \sin \theta < 0 \) and thus the given expression for \( \sin \theta \) is valid. We will find \( \cos \theta \) using the Pythagorean identity: 1. Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we substitute \( \sin \theta = \frac{-6k}{k^2 + 9} \). This gives us: \[ \left(\frac{-6k}{k^2 + 9}\right)^2 + \cos^2 \theta = 1 \] Simplifying this, we find: \[ \frac{(36k^2)}{(k^2 + 9)^2} + \cos^2 \theta = 1 \] Thus, \[ \cos^2 \theta = 1 - \frac{36k^2}{(k^2 + 9)^2} \] Since \( \cos \theta \) is positive in the second quadrant, we take the positive root: \[ \cos \theta = \sqrt{1 - \frac{36k^2}{(k^2 + 9)^2}} \] 2. For \( \tan \theta + \frac{1}{\cos \theta} \), we know: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] Therefore, \[ \tan \theta + \frac{1}{\cos \theta} = \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} = \frac{\sin \theta + 1}{\cos \theta} \] Substituting \( \sin \theta \) and \( \cos \theta \) into this equation, we can express the result solely in terms of \( k \): \[ \tan \theta + \frac{1}{\cos \theta} = \frac{\frac{-6k}{k^2 + 9} + 1}{\sqrt{1 - \frac{36k^2}{(k^2 + 9)^2}}} \] Thus, we have both expressions defined in terms of \( k \) for \( \cos \theta \) and \( \tan \theta + \frac{1}{\cos \theta} \).

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy