Pregunta
upstudy study bank question image url

*) If \( \sin \theta=\frac{-6 k}{k^{2}+9}, 0
Ask by Ingram Bernard. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \cos \theta = -\frac{\sqrt{k^4 - 18k^2 + 81}}{k^2 + 9} \] \[ \tan \theta + \frac{1}{\cos \theta} = \frac{6k - k^2 - 9}{\sqrt{k^4 - 18k^2 + 81}} \]

Solución

To solve the problem, we start with the given condition: \[ \sin \theta = \frac{-6k}{k^2 + 9} \] We know that \(\theta\) is in the interval \((90^\circ, 270^\circ)\), which means \(\sin \theta\) is negative and \(\cos \theta\) will also be negative in this range. ### Step 1: Determine \(\cos \theta\) Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] We can express \(\cos^2 \theta\) in terms of \(\sin \theta\): \[ \cos^2 \theta = 1 - \sin^2 \theta \] Substituting \(\sin \theta\): \[ \cos^2 \theta = 1 - \left(\frac{-6k}{k^2 + 9}\right)^2 \] Calculating \(\sin^2 \theta\): \[ \sin^2 \theta = \frac{36k^2}{(k^2 + 9)^2} \] Now substituting this into the equation for \(\cos^2 \theta\): \[ \cos^2 \theta = 1 - \frac{36k^2}{(k^2 + 9)^2} \] To combine these terms, we need a common denominator: \[ \cos^2 \theta = \frac{(k^2 + 9)^2 - 36k^2}{(k^2 + 9)^2} \] Now we simplify the numerator: \[ (k^2 + 9)^2 - 36k^2 = k^4 + 18k^2 + 81 - 36k^2 = k^4 - 18k^2 + 81 \] Thus, we have: \[ \cos^2 \theta = \frac{k^4 - 18k^2 + 81}{(k^2 + 9)^2} \] Since \(\theta\) is in the second quadrant, \(\cos \theta\) is negative: \[ \cos \theta = -\sqrt{\frac{k^4 - 18k^2 + 81}{(k^2 + 9)^2}} = -\frac{\sqrt{k^4 - 18k^2 + 81}}{k^2 + 9} \] ### Step 2: Determine \(\tan \theta + \frac{1}{\cos \theta}\) We know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] Substituting the expressions we found: \[ \tan \theta = \frac{\frac{-6k}{k^2 + 9}}{-\frac{\sqrt{k^4 - 18k^2 + 81}}{k^2 + 9}} = \frac{6k}{\sqrt{k^4 - 18k^2 + 81}} \] Now we can find \(\tan \theta + \frac{1}{\cos \theta}\): \[ \frac{1}{\cos \theta} = -\frac{k^2 + 9}{\sqrt{k^4 - 18k^2 + 81}} \] Thus: \[ \tan \theta + \frac{1}{\cos \theta} = \frac{6k}{\sqrt{k^4 - 18k^2 + 81}} - \frac{k^2 + 9}{\sqrt{k^4 - 18k^2 + 81}} \] Combining these fractions: \[ \tan \theta + \frac{1}{\cos \theta} = \frac{6k - (k^2 + 9)}{\sqrt{k^4 - 18k^2 + 81}} = \frac{6k - k^2 - 9}{\sqrt{k^4 - 18k^2 + 81}} \] ### Final Results 1. \(\cos \theta = -\frac{\sqrt{k^4 - 18k^2 + 81}}{k^2 + 9}\) 2. \(\tan \theta + \frac{1}{\cos \theta} = \frac{6k - k^2 - 9}{\sqrt{k^4 - 18k^2 + 81}}\)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's begin with some trigonometric identities. Since \( \theta \) is in the second quadrant (between \( 90^\circ \) and \( 270^\circ \)), we know that \( \sin \theta < 0 \) and thus the given expression for \( \sin \theta \) is valid. We will find \( \cos \theta \) using the Pythagorean identity: 1. Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we substitute \( \sin \theta = \frac{-6k}{k^2 + 9} \). This gives us: \[ \left(\frac{-6k}{k^2 + 9}\right)^2 + \cos^2 \theta = 1 \] Simplifying this, we find: \[ \frac{(36k^2)}{(k^2 + 9)^2} + \cos^2 \theta = 1 \] Thus, \[ \cos^2 \theta = 1 - \frac{36k^2}{(k^2 + 9)^2} \] Since \( \cos \theta \) is positive in the second quadrant, we take the positive root: \[ \cos \theta = \sqrt{1 - \frac{36k^2}{(k^2 + 9)^2}} \] 2. For \( \tan \theta + \frac{1}{\cos \theta} \), we know: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] Therefore, \[ \tan \theta + \frac{1}{\cos \theta} = \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} = \frac{\sin \theta + 1}{\cos \theta} \] Substituting \( \sin \theta \) and \( \cos \theta \) into this equation, we can express the result solely in terms of \( k \): \[ \tan \theta + \frac{1}{\cos \theta} = \frac{\frac{-6k}{k^2 + 9} + 1}{\sqrt{1 - \frac{36k^2}{(k^2 + 9)^2}}} \] Thus, we have both expressions defined in terms of \( k \) for \( \cos \theta \) and \( \tan \theta + \frac{1}{\cos \theta} \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad