*) If \( \sin \theta=\frac{-6 k}{k^{2}+9}, 0
Ask by Ingram Bernard. in South Africa
Feb 21,2025
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
Let's begin with some trigonometric identities. Since \( \theta \) is in the second quadrant (between \( 90^\circ \) and \( 270^\circ \)), we know that \( \sin \theta < 0 \) and thus the given expression for \( \sin \theta \) is valid. We will find \( \cos \theta \) using the Pythagorean identity: 1. Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we substitute \( \sin \theta = \frac{-6k}{k^2 + 9} \). This gives us: \[ \left(\frac{-6k}{k^2 + 9}\right)^2 + \cos^2 \theta = 1 \] Simplifying this, we find: \[ \frac{(36k^2)}{(k^2 + 9)^2} + \cos^2 \theta = 1 \] Thus, \[ \cos^2 \theta = 1 - \frac{36k^2}{(k^2 + 9)^2} \] Since \( \cos \theta \) is positive in the second quadrant, we take the positive root: \[ \cos \theta = \sqrt{1 - \frac{36k^2}{(k^2 + 9)^2}} \] 2. For \( \tan \theta + \frac{1}{\cos \theta} \), we know: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] Therefore, \[ \tan \theta + \frac{1}{\cos \theta} = \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} = \frac{\sin \theta + 1}{\cos \theta} \] Substituting \( \sin \theta \) and \( \cos \theta \) into this equation, we can express the result solely in terms of \( k \): \[ \tan \theta + \frac{1}{\cos \theta} = \frac{\frac{-6k}{k^2 + 9} + 1}{\sqrt{1 - \frac{36k^2}{(k^2 + 9)^2}}} \] Thus, we have both expressions defined in terms of \( k \) for \( \cos \theta \) and \( \tan \theta + \frac{1}{\cos \theta} \).
